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ABSTRACT 

The major thrust of this work is the development and demonstration of new 

capabilities for the use of small autonomous vehicles in mine countermeasure applications. 

Key to the new capabilities lies in an open architecture tri-level software structure for 

hybrid control, of which this work is the first validated implementation. The two upper 

levels run asynchronously in computing logical operations based on numerical decision 

making, while the lowest, the Execution Level, runs synchronously to maintain stability of 

vehicle motion. The top (Strategic) Level of control uses Prolog as a rule based language 

for the specification of the discrete event system (DES) aspects of the mission. Multiple 

servo controllers are coordinated by the middle (Tactical) Level software in performing the 

mission, while the Execution Level controllers guarantee robust motion stability through 

multiple sliding modes. 

This hardware / software arrangement provides the ability to operate a hybrid 

(mixed discrete state/continuous state) controller for semi-autonomous and autonomous 

vehicles in which the missions imply multiple task robot behavior. This work has defined 

and developed a set of vehicle "primitives", that are a set of stable modular control 

functions unique to a given vehicle's capabilities. It is demonstrated how these can easily 

be combined using rules to specify as simple, or as complex, a mission as desired. 

Completion of a mission is guaranteed through a "complete plan" including time traps and 

error recovery procedures. Experimental results are given illustrating the performance 

attained. 

A particular case of the techniques developed has resulted in a method to navigate 

an AUV in a local area (around a mine-like object) using a profiling sonar sensor for 

position information derived from underwater feature detection. Since sonar image feature 

extraction is necessarily time consuming, a dynamic model of the vehicle response is used 

for control between position updates. A structured formulation of this control / navigation 

method is presented followed by results from in water implementation using the NPS 

Phoenix vehicle and the tri-level software structure described above. 
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I. INTRODUCTION 

At the present time, unmanned underwater vehicle (UUV) activities in military and 

scientific / commercial fields are usually performed by Remotely Operated Vehicles 

(ROV's). These vehicles are tethered to a surface ship or offshore platform by an umbilical 

cable which provides power and control signals. They are employed in the offshore oil and 

gas industries, salvage and recovery, and increasingly, ocean science, as well as in military 

mine countermeasures. Vehicle motion control is provided by a human operator (pilot) on 

the surface, who views the underwater environment through a video camera for short range 

visual feedback. Scanning sonar is often added for longer range information. 

When deep water applications or large horizontal movements of a vehicle are 

necessary, the tether becomes an ever increasing liability. It adds tensile loading on the 

vehicle; often uncertain and time varying, and requires elaborate tether management 

equipment. It is this shortcoming, and the associated costs of the support ship, that has led 

to the development of Autonomous Underwater Vehicles (AUV's). An AUV is 

independent of a tether for power and control, and is free to maneuver more easily over 

larger distances or depths, with little or no direct human supervision. This type of vehicle is 

well suited for performing expensive and monotonous tasks such as ocean water quality, 

bathymetric, and geological survey. AUV's could also be utilized for harbor and 

underwater structural inspection tasks, and most importantly, mine countermeasures and 

neutralization, where there is a potential for loss of life. 

Freedom from the tether is not without cost however, since the ability to 

satisfactorily perform a mission requires a more complex control system. Even though 

underwater communication with the vehicle is possible using acoustics, the transmission 

rates and distances are limited. Real time video feedback to the pilot cannot be 

accomplished. As opposed to control from the surface ship, AUV's have the need for 

increased automated functionality onboard not only for self navigation but also for 

"intelligent" tasks as in fault monitoring, control system reconfiguration, and environmental 

interpretation. 

To implement such a highly automated system, multiple cooperating onboard 

computers or at least a single computer using multiple processes are used. One problem in 

designing and understanding the behavior of such a system is that a meaningful mission for 

an AUV can not be described or modeled using conventional feedback control theory 



(Friedland, 1986). While this is an integral component of AUV control, a much higher 

level of coordination is required. A typical mission would consist of various phases, such 

as launch, transit, search, recovery, etc., and a method of sequencing these actions must be 

in place. Since the use of a single process/computer to perform all of these tasks would be 

extremely difficult, mutiprocess / mutiprocessor configurations are preferred. It simplifies 

combining the low level, servo control tasks, which must run in real time for stability 

considerations, with high level algorithms designed to manage the mission objectives. It 

eases programming difficulties, even for the simplest mission modification, or software 

changes required for vehicle enhancements. Since sequencing mission phases is inherently 

an asynchronous process, and operates with longer time scales than for the synchronous 

servo controllers, there is no need to run them on the same processor. The natural division 

of synchronous and asynchronous tasks maps well into the separation of symbolic and 

numeric operations and is well suited to multiple computers. Each system can be chosen 

based on their particular attributes with regard to computer languages, operating systems, 

timing constraints, and processor speed. 

Since the vehicle motion exists in a physical world, it can be modeled theoretically 

by a set of differential equations as is well known in describing the behavior and control of 

Dynamic Systems (DCS). On the other hand, the mission sequencing lies in the domain of 

Discrete Event Systems (DES). Manufacturing literature is replete with studies of discrete 

event system control, and (Cassandras, 1993) gives a comprehensive overview, but few 

discuss the integration of DES and DCS. These combined systems are usually referred to 

as "Hybrid" control systems, and will be addressed in detail, as part of this work. 

Early work on this subject was done by (Saridis, 1983), describing a hierarchical 

three level controller consisting of the organization, coordination, and hardware levels. The 

three levels act together using "cognitive and control systems methodologies" with ".. 

control intelligence .. distributed according to the principle of increasing intelligence with 

decreasing precision, evident in all hierarchical management systems". However, this was 

developed in the context of industrial robot manipulators rather than underwater vehicles. 

As applied to underwater vehicles, the three levels have been named in (Byrnes, et. 

al., 1993, Byrnes, et. al.,1996) as the Strategic, Tactical, and Execution levels. The 

Strategic Level is a discrete event system managing the progress of the mission, while the 

Tactical Level coordinates the control modes required, and the Execution Level performs 

the motion control of the vehicle. Byrnes work included a thorough study of both 

backward and forward chaining versions of the "Rational Behavior Model" but was 



restricted to workstation simulations, not implemented in an actual vehicle operating in the 

underwater environment. 

Other approaches to robot control include the use of subsumption and layered 

control (Brooks, 1986). In principle, the concept is simple and eases the development of 

robot hardware. However, an added coordination layer was found to be necessary for 

AUV's when specific mission objectives have to be met (Bellingham and Consi, 1991). 

Their work has been applied to open water flight control for oceanographic survey 

operations, where only limited robot actions are involved. 

Tri-level control of underwater robots has been studied in France and Portugal. The 

effort in France has focused on the development of a computer-aided design system 

(ORCCAD) (Simon, et. al., 1993) using Esterel - a synchronous language - that encodes 

the mission as a finite state automaton. Also, the PIRAT system is a computer-aided design 

software package for the development, implementation, and verification of servo level 

control laws. This work has been applied to the Vortex vehicle (Perrier, et. al., 1993), 

although the interfacing and integration of these packages with other vehicles could be 

difficult. 
In Portugal, Petri net methodologies at the Strategic Level and gain scheduled 

control at the Execution Level are being employed for the MARIUS vehicle. As part of this 

activity, yet another language - CORAL - is being developed for the real time execution of 

Petri net mission controllers, although, in this case, the cross compiling into C code for 

running on general platforms and interfacing with other vehicles is a promising 

development. 
In spite of these recent research efforts, no unified design methodology for robot 

controllers exists. Implementations on operational underwater vehicles are few and limited 

in scope. In fact, it has not been shown that any one robot control system is uniquely 

superior to another, although some systems appear to be easier to reconfigure than others. 

Therefore, the main purpose of this work is to develop, demonstrate, and validate an open 

architecture, three level control system for an AUV. Using commercially available 

languages, this would allow ease in reconfiguration of control modes, and in particular, the 

examination of robot performance in the context of hovering and local area maneuvering 

around a target. The importance of this work is the use of an existing AI computer language 

known as Prolog, as opposed to a special purpose language such as Esterel. Prolog is 

convenient for Strategic Level sequencing of the mission phases, and allows the use of the 



full powers of the Prolog inference engine. It also provides a natural link between symbolic 

operations and the C language numerical computations in the Execution Level. 

These control concepts have been validated on a small underwater vehicle (6 ft in 

length), which possesses both fins, cross-body thrusters, and rear propulsors for motion 

control. In the majority of this work, the thrusters and rear propulsors are used for 

movement in a small area. The vehicle is able to maneuver in many different directions and 

if needed, backwards. With this type of general motion capability, there is no fixed speed 

and direction of motion, and since the motion is limited, the vehicle rarely reaches a steady 

state condition. The vehicle is subject to highly non-linear effects from quadratic lift and 

drag forces, (Fossen, 1991, Yuh, 1990, Sarpkaya and Issacson, 1981) so that linear 

modeling and control techniques are not suitable. One approach in nonlinear control is to 

linearize about some nominal operating point. When operating points change slowly, gain 

scheduling techniques are often employed (Healey, et. al., 1995). In fact, linearization 

about a constant forward speed is the usual technique used for submarine and torpedo 

control design (Milliken, 1984, Lindgren, et al., 1967). However, in the cases studied in 

this work, slowly changing operating points do not exist, and linearization about such 

points is not possible. For these systems, non-linear techniques are required to ensure high 

performance control and stability. 

For the Execution Level, application of the sliding mode methodology (SMC) is 

used throughout this work. It can deal with non-linear dynamics directly and is effective 

against parametric uncertainties and unmodeled disturbances. A tutorial covering general 

concepts is given in (Decarlo, et. al., 1988). Simplified applications to ROV's and AUV's 

are given in (Yoerger and Slotine, 1985), (Yoerger, et. al., 1986). A multivariable sliding 

mode autopilot for AUV's using decoupled modeling for speed, steering and diving was 

described by (Healey and Lienard,1993). Dynamic positioning of ROV's using sliding 

modes is described in (Fossen, 1991) and (Fossen and Sagatun, 1991). 

The objectives of this work separate into five distinct parts. 

1. Chapter II covers the general theory of vehicle control using Sliding 

Modes. A 6 DOF mathematical model of the vehicle and controller is given 

together with 3-D command generators for precise velocity and positioning 

maneuvers. Also included is a robustness analysis of the controller design 

validated by computer simulation results. 



2. Robot control of the NPS Phoenix vehicle is discussed in Chapter III, 

starting with an overview of robot control structures in general from various 

other efforts throughout the world. Details of the computer hardware and 

software systems used for mission control are provided. Results from in-water 

experiments show the effectiveness of this control method, and a short critique 

of the control architecture is presented at the end. 

3. In Chapter IV, an in-depth discussion and description of the acoustic 

sensors used by the vehicle for navigation and environmental assessment is 

given. 

4. Chapter V gives in-water experimental results and performance evaluations 

of sliding mode control for the Phoenix. Results of submergence, rotation, and 

longitudinal motion control experiments are presented which include Kaiman 

filters necessary to the successful implementation of the respective control 

designs. Results of coordinated maneuvers using combinations of 

submergence and rotation control are presented. 

5. Local area maneuvering of the Phoenix with sonar is outlined in Chapter 

VI. This chapter contains a description of experiments conducted with sonar 

control algorithms for target recognition, relative range and bearing 

calculations. Two algorithms have been applied to this problem together with 

simulation and complete verification for each. In-water results using one of the 

algorithms are presented together with a performance evaluation. 

A summary of the dissertation is given in Chapter VII, which contains concluding 

comments, remaining issues, and recommendations for future work. An extensive section 

of appendices is presented at the end of this work to provide the reader with implementation 

details and software that was not deemed appropriate for the body of the text. 





II. GENERAL THEORY OF AUV MOTION CONTROL 

This chapter discusses the foundation and design of a MIMO (Multiple 

Input/Multiple Output) Sliding Mode controller for an (AUV) in performing precision 

tracking to command signals. Precision control is needed for maneuvers such as automatic 

docking, recovery, and submerged object inspection / identification. Whenever an 

underwater vehicle maneuvers in the surrounding water column, it is inevitable that reaction 

forces, caused by time varying changes to the pressure distribution around the vehicle 

body, are generated. These forces arise from hydrostatic buoyancy as well as from the 

relative velocity and acceleration of motion. Hydrodynamic forces and moments are usually 

expressed in terms of lift, drag, and added mass components modeled with assumed 

constant coefficients. Since the hydrodynamic coefficients are only estimates, often based 

on poor representations of reality at best, large parameter uncertainty exists. 

The system to be controlled is highly nonlinear and coupled. While tracking control 

could be implemented using a variety of techniques that have been proposed recently, it has 

been confirmed during the course of this research that control using sliding modes results 

in high gain robust controllers that are easily tuned and modified. This particular attribute is 

beneficial because it leads to the notion that control law adaptivity could be readily 

accomplished. 

In this chapter the NPS Phoenix AUV is used as the basis for the development of 

the control theory and is assumed to have 8 independently controllable fins, two stern 

rudders, two stern planes, two bow rudders, and two bow planes. Propulsion is provided 

by four cross body thrusters, two lateral and two vertical, with two rear screws. The 

computer simulation model so developed is based on non-linear equations of motion for 

this vehicle. Section A describes the vehicle model with a controller design using sliding 

modes. A robustness analysis of the control design is given in Section B. A design 

methodology for robustness is presented which accounts for parametric discrepancies 

between the dynamic model used for controller design and the actual vehicle. Section C 

presents the specific sliding mode control implementation for the NPS Phoenix vehicle. 

Discussed in Section D is control allocation among the various actuators available to the 

vehicle. Since some vehicles, including the Phoenix, are "over-actuated", methods to 

allocate the control effort are of primary importance and several suggestions to handle this 

are presented. Two computer simulations of the performance of the control design are 



presented in Section E. One case uses all available actuators (thrusters, fins, screws), while 

the second uses only fins and the rear screws for control. The simulation uses the complete 

set of equations of motion, although the particular cases presented here are restricted to the 

horizontal plane. Command generators for position, velocity, and acceleration as a function 

of time along a specified trajectory are developed and discussed in the performance of 

precision tracking control. The final section gives conclusions and recommendations for 

future work. 

A.      SLIDING MODE CONTROL AND MODEL BASED CONTROL LAW 

DESIGN 

This section outlines a general theory and the design of a MIMO Sliding Mode 

Controller for an underwater vehicle. This method provides robust control of systems with 

nonlinear dynamics, parameter uncertainties, and disturbances. The main advantage of this 

approach is the use of a switching term in the control law which drives the plant's state 

trajectory onto a specified surface, known as the sliding surface. "Chattering" of the control 

input caused by high gain in the switching term, is reduced by the introduction of a 

boundary layer around the sliding surface. The effect of this boundary layer, is to lower the 

feedback gain when small errors exist, resulting in smooth control. This technique is 

particularly useful when feedback signals are noisy. Stability is analyzed using standard 

Lyapunov methodology. 

1. Vehicle Mathematical Modeling 

The mathematical model of a system describes it's dynamic behavior, and is usually 

embodied in a set of differential equations. It forms the basis by which stability of feedback 

control laws can be assessed. It is also critical to the design of predictive and other more 

advanced model based controllers, of which, those using sliding modes, form one 

example. It follows that a mathematical model of an AUV must be established if advanced 

model based methods are to be developed. At that point, an array of analytical and 

computer tools can be used for analysis and synthesis purposes. 

An underwater vehicle can be assumed to be a rigid body, capable of adopting any 

position and orientation in the water column. However, in contrast to high speed aircraft 

and spacecraft, significant departures from a predominantly horizontal attitude are 



uncommon. Three independent position and three Euler angles are required for describing 

the location and attitude of the vehicle. For convenience, three coordinate frames are used. 

One, denoted as the body-fixed frame (O), is rigidly fixed to and rotates with the vehicle, 

the second, is a global, earth-fixed frame (G) taken as the inertial reference, and used for 

local area navigation. A third reference frame (C), parallel to the inertial reference, moves 
with the local fluid particles at a constant velocity, uc, (the local current) where 

«c = k »* «* ° ° °)T- 

Rotational currents and fluid accelerations are assumed to be zero in this work. The three 

reference frames and their relation to each other are shown in Figure 2.1 which show the 

body-fixed frame in an arbitrary location and the centers of mass and buoyancy described 
by the position vectors rG  and rB respectively. The vehicle motion, expressed in the 

body-fixed frame, is defined in terms of the six components of the velocity vector x{t), 

where 

x(t) = (u(t) v(t) w(t) p(t) q(t) r(t)) T. (2.1) 

A distinction is made in this definition between absolute velocity of the rigid-body 

and it's velocity relative to the surrounding water column. Typically, the vector x(t) is 

viewed to be the absolute velocity of a rigid-body expressed in the rotating, body-fixed 

frame as described by (Fossen, 1991). However, this formulation introduces difficulties if 

a fluid current is present, since the hydrodynamic lift and drag terms are functions of the 

velocity of the fluid particles relative to the vehicle, rather than it's absolute velocity. The 

relative velocity formulation overcomes this difficulty. With this definition, the principle of 

relative velocities can be used to obtain the absolute velocity of the body given the three 

reference frames. The position of the vehicle in the global reference frame is given by 

z(t) = (X(t) Y(t) Z(t) <t>(t) 6(t) y(t))T, (2.2) 

An Euler angle transformation (the definition and use of Euler angle transformations is well 

known and described in standard texts on the dynamics of rigid-bodies) is used to relate the 

vehicle relative velocity components, x{t), to the rate of change of global position, z(t). 

The global velocity of the vehicle can now be expressed as 



z{t) = h(z(t))x(t) + uc(t), (2.3) 

where h(z(t)) is the 6x6 transformation matrix as a function of the Euler angles <j)(t), 

6{t), y/(t), (spin, elevation, and azimuth respectively), given by 

*(z(0) = 
T,(z(0)        0 

0        Tr(z(t)\ 

where 

and 

T(<p) 

T,(z(t)) = T(y/)TT(6)TT((t>)T, 

1 0 0 

0 COS(j) sin(f> 

0 —sin(j) cos<p 

■  T{6) = 

cos 6 0 —sinO 

0 1 0 

sind 0 cosO 

; Tiy) = 

cosy/    siny/   0 

-siny/   cosy/   0 
0 0      1 

The matrix transformations for the translational, T,(z(t)), and rotational, Tr(z(t)), velocity 
components can also be expressed as 

T,(z(t)) = 

cosy/cosO   cosyrsin6sin(l> - sinyrcosty   cosy/sin6cos(j) + siny/sin(j) 

siny/cosO    siny/sindsin^) + cosy/cos(f>   siny/sin6cos(j) - cosyrsin<f> 

-sind cosdsin<j) cosOcosQ 

and 

Tr(z(t)) = 

1     siniptanQ       cos(j)tan6 

0        cosq) -sin(j) 

0   sintp I cosd   cosq) I cosd 

Note that h(z(t)) is not an orthogonal matrix, and h(z(t))~' * h(z(t))T. 

With the coordinate frames defined, Newton's second law of motion may be used 

to formulate a dynamic model of the system. The dynamics of the AUV can be described 

by a set of six non-linear, coupled, second order differential equations with constant 

coefficients. For a submerged rigid-body, the equations of motion formulated in a body- 

fixed reference frame with an arbitrary origin and constant mass and inertia is given by 
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m(v„ + CD0xv„ + äaxrG + coox(o)0XrG)) = F0 

lß0 + coox(loo)o) + mrGxv0 + mrGx(a)0Xv0) = M0 

where the first vector equation represents the translational motion, while the second 
describes the rotational motion. v0, coo, and rG are defined by 

v„ = (u v wf 

®o= {P 1 rf 

ra = (
X

G yG zG)
T. 

m is the vehicle mass, and the inertia tensor with respect to the body-fixed reference is 

/   = 
XX -h -K 

-L- A, -hi 
-K -K K 

F0 and Mn represent the forces and moments respectively, derived from gravitational 

effects of weight and buoyancy, hydrodynamic lift and drag terms, which are functions of 
a set of hydrodynamic coefficients, and the relative velocities defined by x(t). These terms 

also include the effects of hydrodynamic added mass, disturbance forces/moments, and any 

control inputs from thrusters and control surfaces, and each element can be described by 

F„   ={XnY0Z0)
T 

M„ = (K. M0 N0)
T, 

where X0, Y0, and Zfl are the surge, sway and heave forces, and K0, M0, Ng are the roll, 

pitch, and yaw moments. 

In matrix form, the dynamics model may be represented as 

Mx(t) = f(x(t),z(t),c) + g(x(t),z(t))u(t), (2.4) 
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M = 

where M is the 6 x 6 mass matrix represented by 

m - X. 0                       0 0 mzG -myG 

0 m - Y-                   0 -{mzG + Y-) 0 mxG - Y- 

0 0                  m - Zw myG -{mxG + Z-) 0 

0 -{mzG + K,)           myG /„ - Kp -I„ -(/« + Kt) 
mzG 0 -{mxG + M^) -1^. /„. - M- -Iyz 

-myG mxG - Nt                0 -(lxz + Np) -/„ Ia - N, 

which includes the hydrodynamic added mass and off diagonal terms. The vector 

f(x(t),z(t),c) is the 6x1 set of forces/moments from centrifugal and Coriolis effects, 

gravitation and hydrodynamic lift and drag terms, which are functions of a set of 

hydrodynamic coefficients, c, as described earlier. u(t) is the input control vector with 

dimension 6 x m, of the form 

u(t) = (w,(0 u2(t) Mj(f)- um(t))T, 

where m is the number of control inputs and is determined by the specific vehicle design. 

The input gain matrix, g(x(t),z(t)), contains coefficients that describe the effectiveness of 

each control input on the vehicle motion, and is speed dependent if control surfaces are 

used. For more detail refer to (Yuh, 1990, Fossen, 1991, Healey, 1993), and for specifics 

of the NPS Phoenix design, see Appendix A. 

2. Sliding Mode Control Design 

Now that the dynamic model of the vehicle has been formulated, the sliding mode 

control law can be designed. With the exception of cruising vehicles in flight control modes 

(where the main control modes are for vehicle speed, heading, and depth), it is usually 

desired to control the motion of an underwater vehicle relative to an inertial reference, not 

relative to the water column. Therefore, the appropriate error vector is defined in terms of 

global coordinates as 
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z{t)_ 
= - 

_z{t)_ 
€  9? 12x1 (2.5) 

The subscript com refers to the commanded value of the position or velocity in question, 

where commanded time variations of states must be consistent with vehicle physical 

capabilities and usually come from a separate path planning algorithm called a "command 

generator". Position, velocity, and acceleration profiles are ideally kinematically consistent, 

and continuous with the possible exception of acceleration. One method to generate 

position, velocity, and acceleration profiles is presented in detail in Appendix B. 

Since Eqn. (2.1) in terms relative velocities, and Eqn. (2.5) consists of the global 

quantities to be tracked, modification of the dynamics equation, (2.4), is needed. By 
differentiating Eqn. (2.3), an expression for x(t) in terms of z(t), z\t), and the current uc 

is given by 

x{t) = h(z(t)r'z(t) - h(z(t)y'h(z(t))h(z(t))-'{m - uc). (2.6) 

Substituting Eqn. (2.6) into (2.4), rearranging and dropping the "function of" notation for 

clarity, the dynamic equations of motion are now compatible with the definition of the 

tracking errors 

z(t) = hM-'{f + gu(tj) + hh-'(z(t) - uc). (2.7) 

The objective of a controller is to force the tracking error to zero as time increases. 

Using sliding mode methods (DeCarlo, et. al., 1988, Yoeger and Slotine, 1985), a set of 

sliding surfaces, <r(z(r)), is defined as 

<y(z(0) = [S,  52  5,] 
z(t) 
z(t) 

jz(t)dt 
(2.8) 

where 

<7(z(0) e *    , S„ S2, S3 e 9?" 
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and for an underwater vehicle with 6 degrees of freedom, n = 6. If m < n, the system is 

under actuated and only a subset of the system modes will be controllable. The reader is 

referred to (DeCarlo, et. al., 1988) for a discussion on switching surfaces for a system 

with n states and m actuators. 

In spite of the fact that normally there are the same number of sliding surfaces as 

control inputs, for the m inputs defined, there are only 6 independent combinations 

corresponding to the six independent degrees-of-freedom of the vehicle. It follows that six 

sliding surfaces are required for the description of six independent sliding modes rather 

than ten. 

An integral term is included to remove any steady-state position errors that may 

arise from discrepancies between the assumed current magnitudes and the actual, as well as 
the presence of unknown disturbances that are not modeled. The elements of Sr S2, and 

S3 can be selected to provide the desired performance of the closed loop system. Stable 

tracking behavior is achieved, if the condition: 

Urn <x(z(0) -» 0, 
r->°° 

together with 
lim o{%{t)) -» 0, 

will also imply 

z{t) -» 0 as t -> °°, 

so that the elements of S,, S2, and S3 are chosen to provide stable polynomial functions 

of state errors. Also, if S, = I, there is no loss of generality. Conditions under which 

a(z(0) is always decreasing can be established using Lyapunov theory by defining V{o) 

as 

V(c) = -oT(z(t))*v(z(t)) > 0   V t > 0, (2.9) 

suchthat V(0) = 0 and is always increasing with c{z{t)), while 

V(t) = öT{z{t))*a{X(t)) < 0   V t > 0. (2.10) 
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Global asymptotic stability is then guaranteed if V(0 is positive definite while V(t) is 

negative definite. The quadratic nature of (2.9) assures the positive definiteness of V(t), 

while negative definiteness of V(t) may be obtained by a criterion satisfied by 

el(z(t)) = - 77,^n(cr.(z(0))   i = 1...6, (2.11) 

where each 77, is a positive scalar. The positive definiteness of V(t) and the negative 

definiteness of V(t), implies that given any initial condition, cr(z(0)), a(z{t)) will remain 

bounded such that V(a(z(t)) < V(a(z(0)). 

Since ^gn(a,(£(0)) is discontinuous across o(z(t)) = 0, undesirable switch 

chattering can occur, and can be alleviated by the use of a "boundary layer" around 

<7(z(t)) = 0. Therefore, instead of using a sgn function, a continuous one could be used 

such that 

satia^m) / fa) = 
'sgn(a,(z(t)))   if |«T,-(Z(0)| > 0, 

0({z(t)) I 0,      otherwise . 

Another approach is to simply use the continuous function tanh(a(z(t))). All three 

functions are shown in Figure 2.2. Substituting the definition of sat into Eqn. (2.11) and 

noting Eqn. (2.8), it can be written in a more compact form as 

<T(Z(0) = m + s2m + s3m = -F(O<Z(O), *), (2.12) 

where 

F«r(z(0), *) = 

rijsatiajizit))/^,) 

ri2sat(a2(z(t)) / <p2) 

T]6sat{a6{z(t)) I </>6) 
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Substituting the dynamics equation, (2.7), into the definition of the sliding surface 

(2.12), and again dropping the "function of" notation yields 

zcom(t) - hM'f - hM-'gu{t) - hh-'(z{t) - uc) 

+ S2i{t) + S3z{t) = -F{o, 0), 

and after rearranging, 

gu(t) = 

Mh-'zcom{t) -f- Mh-'hh-'(z(t) - uc) + WT'sjLit) 

+ Mh-'S3z{t) + Mh'F{o, (t>) . 

Since the matrices M, f, g, h, and uc are uncertain in general, the control solution, 

u(t), is formulated using their estimates, denoted as M, f, g, h, and uc. The control 

vector can be split in three parts 

n(0 = u,(i) + u2{t) + u3{t), 

where 

u,{t) = G(Mh-'zam(t) -/) (2.13) 

contains the feed-forward compensation for acceleration requirements, 

u2(t) = GMh-'(hh-'(üc - i) + S2i(t)\ (2.14) 

contains feed-forward and feedback compensation for velocity, and finally 

u3(t) = GMh-'(S3z + F(<x,0)) (2.15) 
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contains feed-forward and feedback compensation for the position errors including the 

switching term based on sliding surface values. G is defined as the pseudo-inverse of g 

and in the case of an over-actuated vehicle, is an mx6 matrix, where m > 6, an 

optimization criterion is needed for uniqueness (See Appendix C). 

In order to implement the control solution defined above, both h~' and G must 

exist. The condition for existence of h~' is that the elevation angle, 6, does not become 

+ 90°, and for an underwater vehicle, this is unlikely if it is properly designed and 

controlled. As for the existence of G, this depends on the actuator arrangement of the 

particular vehicle of interest. If certain modes are not directly controllable, G is rank 

deficient and modifications to the control solution will be required, and is the topic of 

Section C. 

3. A Comment on Full State Feedback 

The analysis presented requires full state feedback, and in many cases this is not 

unreasonable. Current inertial navigation systems provide all six rotational states. Doppler 

sonar gives both speed over the water as well as ground speed, and Long Baseline acoustic 

positioning systems provide X and Y, while pressure sensors give a measurement of Z. 

The use of extended Kaiman filters for navigation can provide all twelve states. 

B.       ROBUSTNESS ANALYSIS AND ASSESSMENT OF 

UNCERTAINTY 

This section presents a robustness analysis of the sliding mode controller 

algorithms previously developed. Accurate modeling of "real" systems can be very difficult 

especially underwater vehicles. Determination of the mass properties, hydrodynamic 

coefficients and the control gains for the various actuators can be very time consuming and 

in some cases impractical. It is a relatively simple task to exactly measure the system's 

"dry" mass parameters but more difficult to determine the added mass coefficients. The 

force characteristics of thrusters can be accurately measured as a separate unit but when 

incorporated into the vehicle, it's behavior becomes dependent on vehicle motion, 

orientation, and any currents that may be present. Even if these parameters are carefully 

identified initially, over time, mechanical wear or environmental changes can cause 

inaccuracies. Since controller designs based on inaccurate models can cause poor 
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performance or even instability, provisions for this must be incorporated into the design. 

Sliding mode control can, so long as the extent of the parameter imprecision is known and 

bounded, provide a systematic approach to this problem. The following analysis deals only 

with structured (or parametric) uncertainties present in the model, and assumes no 

unstructured uncertainties involving unmodeled dynamics are present. 

Recalling the dynamics model in Section A, 

m = hM-'(f + gu(t)) + hh-'(z(t) - uc), (2.16) 

the forces, /, the input gain matrix, g, the mass matrix M, and the current uc are not 

exactly known. Therefore, estimates of these quantities must be made to formulate the 

control solution and are denoted as /, g, M, and uc, which are related to their exact 

values by: 

/, - f, **) 

g = Agg \ 

M = A MM Au, 

< D„ 

< D, M,j 

u„ - u„ < U,. 

Each F,., D , DM , and Uc. represent bounded maximums on the estimation errors for 

any maneuver. Uncertainty in the transformation matrix, h, is assumed small and will not 

be included in the analysis. 
With the above defined, and returning to the definition of the sliding surface 

a(z(t)) = S,m + S2z(t) + S 3jz(t)dt, (2.17) 

it's derivative 

a(z(t)) = S,z(t) + S2z(t) + S3z(t) (2.18) 
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and the condition for global asymptotic stability 

0i(z(t)) = -riJOiiHt)))  i = 7... 6. (2.19) 

Dropping the "function of" notation, and recalling that h = h, the sliding mode control 

law from Section A is 

u = GMh-'(zcom - hM'f + hh-'(uc - z) + S2i + Ssz + T].*sgn(a)). 

(2.20) 

where r\.*sgn{o) is functionally equivalent to F{a, 0), and the notation ".*" refers to 

element by element multiplication. 

For the purposes of stability robustness analysis, the sat function used previously 

in the control law is replaced with a sgn function, since pure switching does not occur 

within the boundary layer, -</>, < at < +</>,, the effectiveness of the gain, r}{, is 

reduced. In order to simplify further discussion, the matrix S; can be taken to be the 

identity matrix without loss of generality. Further, S2 and S3 are assumed to be diagonal 

matrices with separate bandwidth parameters for each mode. It follows that 

cr = zam - hM~'( f + gGMh-'{zcom - hM'f + ÄÄ";(uc. - z) 

(2.21) 
+ S2z + S3z + 77.*sgrt(<r))) + hh~'(z - uc) + SJL + S3z 

which describes the dynamics of the closed loop sliding surface. For clarity (2.21) can be 

separated into n scalar equations written as 

<T(0, = a{t\ + ßWMsgnWt),)     i = L.n, (2.22) 

where (X;(t) and ßt(t) are time dependent scalar quantities for each d,(0 whose output 

will be bounded stable only if 

^ > l^";(0|J|«,.(0|L     i= 1-n, (2.23) 
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where ^(OlL denotes the infinity norm of OC^t), also defined as 

max \OCi(t)\ V t:[0,°°). Selecting each 77, according to Eqn. (2.23) will overcome any 

destabilizing effects due uncertainty in either M, f, g, or uc and provide a robust 

controller design. Although the uncertainties were originally defined in terms of maximum 

bounds, the complexity of (2.21) prevents their direct use in the analysis. Since the terms 
«,(r) and ßt{t) are not only functions of the parameter estimates, but are also functions of 

the time dependent states, simulations for each control maneuver could be performed to 
determine lower bounds for each 77,. Naturally, actuator saturation may limit the ability of 

the control to perform its task, while guaranteeing stability, and this issue may also be 

studied by simulation. 

1. A One-Dimensional Example 

To more clearly illustrate the robustness analysis techniques outlined above, a scalar 

example will be given utilizing the maximum bounds formulation for parametric 

uncertainty. The analysis is an extension of the results from (Slotine and Li, 1991). 

A simplified model of an underwater vehicle operating in the surge direction, x, 

can be written as 

Mx = / + gu, (2.24) 

where u is the control input. M is the mass of the vehicle, including the added mass 

associated with motion in the surge direction, /, the hydrodynamic drag force, and g is 

the input gain and is assumed to be positive. Estimation errors of the mass and input gain 

can be described multiplicatively by 

1        M 
- < ^ < ß    ;    n> 1, (2.25) 

-<1<7      ;   7 > 1, (2.26) 
7       8 
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while the bound on the drag force uncertainty may be formulated as 

/-/    =F, (2.27) 

and F is the infinity norm of [/-/), since / is a function of the time-varying state and 

can be either positive or negative. 

Defining the sliding surface as 

a = x + Ax, 

and it's derivative 

(2.28) 

a = x + Ax, (2.29) 

the resulting control law in terms of the estimates is 

M 

8 

( 
f xc„m ~ 7>  + A* + i\sgn{o) 

V M J 
(2.30) 

Substituting (2.30) into (2.24) provides the closed loop system dynamics 

/        Mg 
x  -   A-   +    6. 

M       Mg 

f 

\ 

f 
*cam ~ 7> + ^ + r\sgn{o) 

M 
(2.31) 

and using Eqn. (2.29), the condition for global asymptotic stability becomes 

GO = 

-L + M-S.L 
M       MgM 

+ ; _  ZLSL M 
Mg [Korn   +   tä ) %iM s o. 

M g 
(2.32) 
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By choosing the value of r\ to be large enough, the condition for stability will be satisfied 

despite the parametric uncertainty. After several steps of algebraic manipulation of Eqn. 

(2.32), and noting that jl'1 < MM'1 < fi and / = /+(/- /), the minimum value of 

the switching gain, 77, that will satisfy the stability requirement is 

/ 
^ ^ + ^i1-r)\ + \^r-]l(^ + ^) M        M 

(2.33) 

Inspection of (2.33) reveals that the required value of 77 for stability increases with the 

degree of parametric uncertainty. On the other hand, if a "perfect" system model is 

available, (2.33) reduces to 

r? > 0, 

Although the robustness analysis relied on the use of a sgn function as the 

switching term, in practice the sat function is used to alleviate undesirable actuator chatter 

which gives rise to lower tracking precision. Since this approach does not provide fast 

switching within the boundary layer, tracking performance will degrade. Therefore a 

design trade-off between tracking performance and control activity exists. The degree of 

parameter uncertainty also plays a role in performance issues. The greater the modeling 

uncertainties, the greater the required control effort, which can cause actuator saturation and 

possibly system instability. 

Use of a state observer can reduce the performance and robustness of the control 

(Cristi, et al., 1990(a), Cristi, et al., 1990(b)) show that errors may still be bounded, but 

robustness guarantees can not be proven to be superior than those using linear LQG/LTR 

techniques. 

C.      SLIDING MODE CONTROL IMPLEMENTATION FOR THE NPS 

PHOENIX VEHICLE 

In order to verify the above theory, simulations have been conducted using a 

mathematical model of the NPS Phoenix vehicle, developed amongst other reasons for the 

purpose of experimental validation of the control concepts contained in this dissertation. 
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While details of the vehicle are given later in Chapter III, we should note for now that it has 

four cross-body thrusters and eight independently controllable fins, as well as twin rear 

propulsion screws to effect its motion control. 

For the NPS Phoenix vehicle, the input control vector is thus defined as 

u(t) = (8br 8hp 8„ Ssp Fk Fn Fbv! Fhl, FM Fsl,)
7 (2.34) 

which contains ten independent actuators. The inputs 5hr,   Sbp,   Ssr,   Ssp are the bow 

rudder, bow plane, stern rudder, and stern plane surface deflections respectively (±0.4 
radian maximum, deflection). Fls and Frs are the forces due to the left and right rear screws 

(±5 lb. maximum force). Fhb and FsU are the bow and stern lateral thruster forces, while 

the bow and stern vertical thruster forces are defined as Fhvl and Fsvl (±2 lb. maximum 

force), all four of which are through-hull and can operate bi-directionally. All control inputs 

are shown pictorially in Figures 2.3 and 2.4. Only four fin commands are needed since 

they act in coupled pairs, and the simulation is based on the assumed numerical values of 

hydrodynamic and thruster coefficients given in Appendix A. 

With the defined control inputs, the resulting 6x10 input gain matrix for this 

actuator configuration is 

g = 

0 0 0 0 1 i 0 0 0 0 
uWdhr 0 UWdsr 0 0 0 0 1 0 1 

0 M^dbP 
0 U\U\ZjsP 

0 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 
0 u\u\MJhp 0 "lMfcy> 0 0 ~Xbvt 0 ~Xsvt 0 

u\u\NJbr 0 u\u\Ndsr 0 -yi.s -yrs 
0 Xbh 0 Xs, 

From this, it can be seen that g does not have full rank since the roll mode is not directly 

controllable using the inputs available. In this situation, the inverse of g does not exist, 

and no direct control solution can be obtained. The uncontrollable mode is the roll motion 

and must be passively stable for a properly designed underwater vehicle. With this 

assumption, the input gain matrix can be redefined by re-ordering the state vector and 

separating the roll equation of motion. This results in a new state vector 

x'(t) = {u(t) v(r) w(t) q(t) r{t) p(t)) (2.35) 
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and 

z(t) = (X(t) 7(0 Z(t) 0(0 y/(t) (t>(t))T, 

where the corresponding input gain matrix is 

0 0 0 0 1 l 0 0 0 

u\u\YSbr 0 u\u\YSxr 0 0 0 0 1 0 

0 M\sbV 
0 MKp 0 0 1 0 1 

0 u\u\MShp 0 M^5sp 0 0 -xbv, 0 ~XXVI 

M^Sbr 0 u\u\NSsr 0 -yb -yrx 
0 Xbh 0 

(2.36) 

0' 

1 

g =     v     m*sbp     u     "i"i^    u    u     i     v    i    o 
0 

Xslt 

which has full rank and is invertable, such that gG" = /. Rearrangement of the state 

vector not only impacts g, but the mass and transformation matrices must also be altered 

resulting in the following 

M* = 

m - X, 

0 

0 

mzG 

-myG 

0 -(mzG + K.) 

0                     0 mzG -myG 0 

m-Y,                  0 0 mxG-Y. -(mza + Yh) 

0                 m - Z.. -{mxc + Z.) 0 myG 

0 -{mxG + M„.) 7VV - M. -7VZ -Iv 

mxG-Ni,                0 -/„ Ia-Nt -(/„+*,) 

myG -(/- + *,)       L ~ K, 

and 

h\z(t)) = 
T;(z(t)) 0 

o      rrV(0). 
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where 

?;V(0) 
cosy/cos6   cosy/sinOsinQ - sin\j/cos<p   cosy/sinOcosty + sinysinty 

siny/cos9   sinyssinOsinip + cosy/cosQ   siny/sinGcosQ - cosy/sirKp 

-sind cosdsirKp cos6cos<p 

and 

T*r{z{t)) = 

cos(j) -sin(j)        0 

sin<j) I cos 9   cos(p I cos6   0 

sin(j)tan6      cosfaand     1 

where the "*" superscript denotes the matrices of the rearranged system. Eqns. (2.13) 

through (2.15) must now use the redefined matrices and vectors to compute the control 

solution, u{t). 

As an aid to understanding this procedure and verifying the stability of the result, 

the following definitions and remarks are given: 

Definition: A system, Z, 

I:       x(t) = f(x(t)) + g(x(t))u(t),   x(t) e 9Tx;, u(t) e 9T1X/,   m>n,   and /, are 

smooth vector fields on Si" and g are smooth matrix functions e 9Txm is said to be 

directly controllable if g has rank of n, and a unique G exists such that gG = I e 9t"x" 
V t:[t0,oo). 

Remark 1: It follows that E, a directly controllable system may be globally 

asymptotically stabilized by the control u(t) = G(x(t)){-f(x(t)) - rj.*sgn(x(t))}.This 

can be proven using the sliding surfaces c = x, and r) >0. 

Lemma: For the system, Z, where rank g is < n, E can be separated into Z, and X2 

where Z,, is a directly controllable subsystem and Z2 is unforced by u(t). 

Proof: If g is rank deficient, a reordering of the state vector can be performed with 

components 
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X  = , x, e 9fx;, x2 e Wn-p)x' 

such that if the rank of g is p, with p < n, g e 9Txm is then written as 

g = 
S, 
6 \g, e *pxm, 

and since rank rank{g,)= p, then a G can always be found so that g,G = I e <Rpxp. 

Z, is then directly controllable, and Z2 is unforced by u(t). 

I,: x1(t) = f1(x1{t),x2{t)) + g](x1{t),x2(t))u{t),x1 e W*',x2 e W"-p)*!,u(t) e 9TX/ 

Z2- x2(t) = f2{x,{t),x2{t)) 

Lemma: The system Z, with rank(g,) = p<n may be globally ultimately stabilized if its 

subsystem, Z2 is passively stable, i.e. 

/=    \T~'xl(T)f2(x,(T),X2(T))dT<   0,X,(t)-4 0, 
JT=0 

t->°°. 

Proof: Using the concept of passive stability, we define Lyapunov candidate functions, 
V;(x;(0) = 0.5x](t)Xj(t), with V2(x2(t)) = 0.5xT

2(t)x2{t). For the entire state, x{t), 

the Lyapunov function is V(t), where 

V(t) = V,{t) + V2(t). 

It follows that V < 0 if V, < 0, and V2 < 0. V, is negative definite for all t, by virtue of 

the sliding mode control design for u(t) remembering that both JC;(0 and x2(t) are known. 
Thus ?-»«. implies that x,(t)-^>0. V2 is <0 for all t>0 iff, 

xl(t)x2(t) < 0, V t:[0,oo) leading to the sufficient condition, 

/ =   [T~';tJ(T)/2(x;(T),*2(T))JT < 0,x,{t)->0, * 
Jr=0 

->°o. 
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The integral /, is a measure of the net energy into the subsystem, Z2, induced by Xj(t), 

and dissipated by x2(t). 

Remark: Ultimate stabilization of I2, and thus I can be proved if there exists a t2 such 

that I(t2,oo) < 0 for all t>t2. 

Remark: Passive stability for I2 also implies that in tracking problems where the state 

Xj(t) is driven to the bounded value xam(t) such that the error x,(t) -> 0, t -> oo, x2(t) 

will be bounded. 

(Note that x, - (w v w q r)T and x2 = p for the control design implementation studied 

here.) 

D.       CONTROL ALLOCATION 

One method to solve the inverse of g(x(t),z(t)) is to use the minimum norm 

solution or weighted minimum norm solution outlined in detail in Appendix C. Use of the 

weighted minimum norm will be the most appropriate since certain actuators will have large 

or small effects depending on the vehicle speed and orientation with respect to a 

commanded path. Equal weighting of all inputs will cause certain actuators to saturate 

under different operating conditions. Since a continuous control over the entire speed range 

is desired, the elements of the weighting matrix, W, should be designed as functions of 

vehicle forward speed, and perhaps the magnitude and direction of any currents present, 

scaled by the maximum level of individual actuators. For the simulations to follow, the 

weighting matrix is diagonal and represented by 
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w = 

w 
°br 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 
"sp 

0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 wF 
' rs 

0 0 0 0 

0 0 0 0 0 0 wF 0 0 0 

0 0 0 0 0 0 0 WF, 0 0 

0 0 0 0 0 0 0 0 wF 1 svt 
0 

0 0 0 0 0 0 0 0 0 wr 

where each w,. corresponds to each actuator given in Eqn. (2.34). Using this means 

continuous control over the entire speed range can accomplished. For example, the control 

surfaces should be given the highest weighting at cruising speed, while the thrusters should 

dominate when the vehicle is maneuvering at low speed or during hovering operations. 

Manipulation of the weights either as a function of state or by a pre-defined plan is a 

convenient way to reconfigure control systems while maintaining stability. 

E. SIMULATION RESULTS 

A two dimensional tracking simulation is now presented which demonstrates the 

performance of the sliding mode controller. Motion of the vehicle is restricted to the 

horizontal plane with the desired trajectory shown in Figure 2.5, which is composed of two 

straight segments 30 feet long and a quarter circle of radius 60 feet. Using the command 

generator algorithms outlined in Appendix B, motion profiles for position, velocity, and 

acceleration of the vehicle surge motion have been specified. For the maneuver, the 
trajectory arc length is 154.24 feet with a specified maximum velocity, unuix, of 1.0 ft I sec 

and maximum acceleration, ü^, of 0.035 ft I sec2. Since the trajectory involves a turn of 

90 degrees, the global position and heading commands must be kinematically consistent, 

and this can be achieved by using Eqn. (2.3). Assuming no current, the global commands 

can be derived from 
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z„m(0 = \h{z{t))xcnm{t)dt 

Zcon.it)   =   Hz(t))Xcom(t) 

zcnm(t) = h(z(t))x(t) + h(z(t))xam(t) 

and for each segment, 

•*comV) 

0 

0 

0 

0 

0 

0 < t < 58.7 sec.   ;   0 < s < 30.0ft. 

xcom(t) = 

Ua,m(tj 

0 

0 

ram(t) 

0 

0 

58.7 < t < 153.0 sec.   ;   30.0 < s < 124.24 ft. 

xcnm(t) = 

0 
0 

0 
0 
0 

153.0 < t < 211.2 sec.   ;   124.24 < s < 154.24 ft. 

and 

rcom(t) = ^^-  ;  58.7 < t < 153.0 sec, 
R 
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where R = 60 ft., the radius of the turn. From this, the global motion command vectors 

are 

zcam{t) = 

X(tj 

Y(t) 

y/(t) 
,« = 

X(t) 

Y(t) 

\j/(t) 
,(0 = 

X(t) 

Y{t) 

Since the path is composed of straight segments and a quarter circle, some of the global 

motion command vectors are discontinuous at the beginning and end of the turn as shown 

in Figures 2.6, 2.7, and 2.8. A more sophisticated trajectory generation method could be 

used to remove these discontinuities. 
Two control cases are performed for tracking the desired path, the first, (Case 1), 

allows all control inputs to be available, while the second, (Case 2), uses no lateral thruster 

assistance, relying only on the rudders and rear screws for control. To demonstrate 

controller robustness, simulation results for Case 1 also contain the responses for varying 

degrees of structured parametric uncertainty. Results using four different levels of 

mismatch in the input gain matrix, g, and a single value of mismatch for the non-linear 

feedforward terms, /*, are given. The differences from the values used in the model were 

and 

8, 

8*2 

* * 
83 

84 = 

/; = 

8 

10.0.*g* 

12.0.*g* 

0.4 *g* 

(4.0\ 

4.0 

1.0 

1.0 

4.0 

K1.0j 

<f- 
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No parameter uncertainties for Case 2 were considered nor any disturbances such as 

current, and the tunnel thrusters were modeled as simple forces; no thruster dynamics were 
used. Matrix 5; was chosen for convenience to be identity and since no current was 

present, no integral control was necessary, therefore S3 was set to 0. For matrix S2, a 

diagonal matrix was used of the form 

S2 = 

^ 0 0 0 0 

0 Ay 0 0 0 

0 0 Az 0 0 

0 0 0 K 0 

0 0 0 0 K 
0 0 0 0 0 

0 

0 

0 

0 

0 

and with this choice, a simple sliding surface design followed such that the prescribed 

tracking error dynamics on the surface become 

1,(0 + A,i,(0 = 0 ; i = X, Y, Z, 6, y/, and 0, 

which has well behaved dynamics, and 

G(z{t)) = (ox GY GZ oe av erf. 

The values of each 77,. and </>,, and A, used in the simulation were: 

Table 2.1 Sliding Mode Control Gains 

Mode X Y Z d ¥ 0 
A 0.5 0.5 0.5 0.5 1.0 N/A 

r\ 0.5 0.5 0.1 0.1 0.3 N/A 

0 1.0 1.0 1.0 1.0 0.1 N/A 

Note that the last sliding surface is included, although the roll motion is not controlled. It 

follows that, maintaining dimensional consistency, the controls are now computed as 
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u,{t) = [G': 0](M*Ä*"!rcom(r) -/*) (2.37) 

u2(t) = [G*: 0]M*/J*
-1

 \-h*h*'lz   + S2't(t) I (2.38) 

u3(t) = [G*: O]M*ä*~'F(C7*,0*) (2.39) 

Results of the first case are shown in Figures 2.9 through 2.18. Inspection of the 

position and heading response show that the vehicle perfectly tracked the commanded 
trajectory when using the exact input gain matrix g] in the controller design. Although the 

system is non-minimum phase, the controller design has been able to compensate for this 

since full state feedback is available. Degradation of the tracking response from increasing 

levels of mismatch in g and / is evident, however, the trajectories of each <7, approach 

zero as shown in Figures 2.11 through 2.13. 

Referring to Figures 2.14 through 2.16, spikes in the control input at the beginning 

and end of the turn are evident, and are caused by the discontinuities of the acceleration 

commands at these locations. Using the input gain matrix g4 in the control design provided 

tracking performance equivalent to using g] (no mismatch), but this came at the expense 

of high actuator activity. Figure 2.17 shows a comparison of the stern rudder response for 
both g* and g*4. Figure 2.18, shows that the roll response is passively stable and is only 

slightly excited by the turning maneuver. 

The second case uses no lateral thrusters for control. Removal of the thruster 
contribution was accomplished by setting the values wFhU and wFslt to zero in the weighting 

matrix, W. Figures 2.19 through 2.23 show the results of this simulation, using two 
different weightings for the rudders wSrh and wSrs. Using Weighting 1, wSrh = wSrs = 1.0, 

resulted in tracking errors as shown in Figures 2.19 and 2.20, and was caused by rudder 

saturation (Figure 2.21). The stern rudder, after an initial negative deflection, rotated 

positive in effort to satisfy the lateral force requirement, resulting in a decreased turning 

moment. 

Since rudder saturation is an undesirable condition, a method must be found that 

can reduce the rudder stroke and still maintain accurate tracking. There are two solutions to 

this problem: (1) use larger area rudders to increase their effectiveness, or (2) reduce the 
weights wSrh and wSrs until the maximum stroke reduces below the saturation limit. Using 

the latter will not only reduce control surface saturation, it also prevents the stern rudder 
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from decreasing the turning moment. The second set of curves denoted by Weighting 2, 
wsrb = wsrs =0.1, shows that reducing the weights provides perfect tracking and an overall 

reduction in the control effort from both the rudders and rear screws. The roll response is 

again passively stable shown in Figure 2.23. 

1. Remark on Non-Minimum Phase Effects 

In course of this work, it has become apparent that non-minimum phase effects can 

arise in two different ways. First, combinations of elements in the input dynamics matrices 

(for a linearized system) that result in unstable zeros in some input/output transfer 

functions. Secondly, in some systems, unstable zeros arise because of particular elements 

in the output matrix. Output linearization of a system belonging to the second class will 

exhibit unstable internal dynamics, and can not be stabilized by output feedback. In the first 

case, sliding mode formulations including the complete state, compensate for any unstable 

zeros and are stabilizable. For the case of underwater vehicles with full state feedback, non- 

minimum phase effects on the stern planes and rudders is fully compensated. 

2. Discrete Time Implementation 

While theoretical development has been performed in the continuous time domain, 

real time control is implemented in the discrete time domain. Time discretization is 
performed using the Euler transformation, x{kT) ~ [xk+1 - xk)/T. 

F.       CONCLUSIONS 

Results from this chapter have shown that the formulation for a MIMO Sliding 

Mode controller performs very well, even with parameter mismatch. The simulations have 

also shown that adequate control authority is needed when performing path tracking 

maneuvers, and the weights for the inverse solution of the input gain matrix can play an 

important role in the control performance. Further work is needed to automate the 

computation of the weights for the control surfaces and thrusters, preferably as a 

continuous function of vehicle forward speed. From this, control saturation can be kept to 

minimum throughout a given maneuver. 
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A robustness analysis was also presented which included any modeling 
inaccuracies in the mass, dynamics, and input gain parameters. The analysis provided a 
design procedure to ensure stability despite the uncertainties. Further work is needed to 
develop a design methodology to eliminate possible actuator saturation due to these 

modeling errors. 
Although, the control design methodology presented appears robust and well 

behaved in simulation, other real factors not included are lags in thruster response. If 
relatively long lags are present, these effects should be included in the general analysis. 
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2.1 Coordinate Frame Representation. 

37 



+ 7 

2.2 Three Possible Switching Functions for the Sliding Mode Controller. 
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2.7 Commanded Global Velocity Profiles vs. Time for Vehicle Performance Simulation. 
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Simulation. 
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Using Various Levels of Parameter Mismatch. 
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III. ROBOT CONTROL AND THE NPS PHOENIX VEHICLE 

In the previous chapter, a general theory for continuous control of vehicle motion 

was presented. This alone is not sufficient to enable an autonomous vehicle to execute a 

complex mission involving multiple phases requiring different control modes. Vehicle 

motion is continuous, while the sequencing and coordination of different control modes is 

represented by discrete events. 

The development of autonomous underwater vehicle control technology for 

underwater robots lies at the intersection of Discrete Event Systems (DES) and Dynamic 

Control of Continuous Systems (DCS) where system theory is well developed for each 

alone but not both acting together. It is not well understood how to formally evaluate the 

performance of these combined systems that are now being referred to as "Hybrid" control 

systems (Antsaklis and Passino, 1993). Saridis (Saridas, 1989) introduced the concept of 

"entropy" for a multidimensional performance index that could possibly be optimized for 

hybrid systems. Computer Aided Design of these systems has been proposed (Simon, et. 

al., 1993) using a rigid robot manipulator as an example, overcoming the lack of formal 

methods by using ORCCAD, a CAD package and the synchronous language "Esterel" 

developed especially for handling DES as automata. 

Software architectures for underwater vehicles - a distinctly different problem from 

robotic manipulators - involve vehicle stabilization issues, and have been described and 

discussed in previous literature (Hall and Adams, 1992, Albus, 1988, Sousa, et. al., 

1994), but without any experimental validation. Few detailed results have been quantified 

for the Odyssey class of vehicle (Smith and Dunn, 1994, Bellingham, et. al., 1994) 

although the Odyssey has performed under ice and demonstrated homing behaviors into a 

capture net. 

Some Hybrid systems are predominantly DES and can be designed using state 

tables and finite state machines, or recently, Petri net methodologies (Cassandras, 1993). 

Others are predominantly continuous DCS with only a small component of discrete state 

logic for which stability theory, established optimal control techniques, and sliding modes 

are well suited (Friedland, 1986). "Hybrid", in the context of this dissertation, deals with 

the underwater robot control problem which is a true mix of DES and DCS for which new 

design techniques and evaluation methods are needed. In order to separate the functionality 

of the system we note that the control of the sequencing of a mission is a discrete event 
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system (DES) problem with the state transitions driven by conditions arising from the 

completion of robot tasks or by sensor based events, while the stabilization and control of 

vehicle motion to mission derived trajectories and or set points, is a traditional problem in 

dynamic control. 

There is currently a very strong interest among researchers in the fields of artificial 

intelligence and robotics in finding a more effective means of linking high level symbolic 

computations relating to mission planning and control for autonomous vehicles to low level 

vehicle control software. Such research typically results in a proposal for a general 

software architecture, intended to solve a wide class of such problems. One of the first 

such proposals due to Saridis, who defined intelligent control as a research area lying in the 

intersection of artificial intelligence, control theory, and operations research (Saridis, 

1983). He then further explicitly recognized three "basic levels" of control called the 

organizational, coordination, and hardware control levels, respectively. A more in depth 

discussion of this problem is given in (Healey, et. al., 1993). 

The NASREM architecture (Albus, 1990) is at one end of the spectrum of Hybrid 

controllers and relies on a hierarchical system of planning. At the other end is the layered 

control with subsumption (Brooks, 1986) modified with discrete state coordination as in 

(Bellingham and Consi, 1991). The state transitions arise from completion of robot tasks 

while the specifications of a mission phase generates plans for vehicle motions in terms of 

either set points and control mode activations. It is the later that forms the basis for linking 

the mission control (DES) at the top (Strategic Level) to the vehicle control (DCS) at the 

bottom, (Execution Level) and is embodied in a middle (Tactical Level) set of control 

software functions. 
This defines a tri-level software control architecture (- the Rational Behavior Model 

- (Byrnes, 1992, Byrnes, et. al., 1993(b))) comprising Strategic, Tactical, and Execution 

Levels. The three levels separate the software into easily modularized functions 

encompassing everything from logically intense discrete state transitioning through the 

interfacing of asynchronous data updates with the real time synchronized controller 

functions that stabilize the vehicle motion to set points or trajectory commands. 
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The distinguishing features that identify each level are 

1. Strategic Level: 

This level in the architecture uses a rule based language and is entirely Boolean - 

dealing only with the management of the discrete state transitioning required to perform the 

mission control. No numerical computations are done at this level and no memory is 

required except for the phase of the mission. In principle, it determines what needs to be 

done next. 

2. Execution Level: 

This level contains all the code functions that are required to stabilize the motion control 

of the vehicle to a set of commands that could be modes to be activated and servo set points 

where the servo control functions can be complex, even including command overrides for 

reflexive behavior and adaptive control features. Many robot controllers operate at this level 

only. 

3. Tactical Level: 

This level is a set of functions that are compiled as predicates in the Strategic Level 

Rules which open and close lines of communications between the Strategic Level and the 

Execution Level functions. They include the functions that gather data from the servo level 

and perform the necessary computations to determine if the robot tasks are completed, 

perform the navigational planning and replanning functions, the sonar computations, state 

of health diagnostic functions, and evaluates and sends appropriate set points and servo 

mode activation flags to the Execution Level. In this level, the computations are numerical 

but asynchronous with respect to time. The distinguishing feature between the Tactical and 

Execution Level software is that of the need for hard real time completion in the Execution 

Level and asynchronous completion in the Tactical Level. 

In the controller architecture, developed in this work, the Strategic Level uses 

Prolog as a rule based mission control specification language. Other DES control system 

design techniques and implementation methods could be used, although, through the work 

of this dissertation so far it has been found that none is more convenient than using this 

existing available language. Prolog has the advantage of being an executable specification 

language which can run in real time as is demonstrated herein. The DES represented by the 
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mission specification could have been be translated in to C, Ada, C++, or other languages 

such as Esterel (Simon, et. al., 1993) and Coral (Silva, et. al., 1994). However, in our use 

of Prolog, the Prolog inference engine cycles through the predicate rules and in doing so, 

manages the state transition aspects of mission control so the need for formal, logical 

verification of the control specification disappears. It transitions the states in real time, and 

generally develops the commands (activations) that drive the vehicle through its mission. 

Error recovery procedures from failures in the mission tasks or the vehicle subsystems are 

handled as transitions to "error" states that ultimately provide commands to the servo level 

control for appropriate recovery action. 
The Tactical Level, currently written in C is set of functions that are linked at 

compile time with the Prolog predicates and are designed to either return TRUE / FALSE in 

response to queries - these are distinguished by the prefix "Ask" in the Prolog rules - or to 

activate commands, distinguished by the prefix "Exec". These Tactical Level functions are 

also interfaced to the real time Execution Level controller using asynchronous 

communications and script type messages passed through an ethernet socket with TCP/IP 

protocol. Mission planning using this system provides a "complete plan". Success is 

guaranteed for every mission phase, either by proper completion, or by an abort. 

The Execution Level controller is designed to command the vehicle subsystems 

appropriately for the mode flags and set points sent on the socket and to activate robot 

behaviors that correspond to those commanded. Communication from the Tactical Level to 

the Execution Level takes place through a single socket. By the design of this hierarchical 

control system, the Tactical Level runs asynchronously and retains the mission data file and 

the mission log file in global memory. It sends the command scripts to the Execution Level 

and requests data for the evaluation of state transitions. The architecture is a hybrid between 

the true hierarchical control of NASREM (Albus, 1990) and purely reactive of subsumption 

(Brooks, 1986) schemes. In this way, control of mission is retained, while reacting to 

unanticipated events is also enabled. 
While earlier results at NPS were obtained by workstation simulations (Byrnes, 

1993(a)), the major contribution of this section of the dissertation is that the tri-level 

software architecture has been implemented and experimentally verified with real time 

hybrid control tests using the NPS Phoenix vehicle. The experiments used all three levels 

of the control software active in real time. In what follows, the details of the vehicle 

hardware, as well as the controller hardware and software configurations are provided with 

discussion of the experimental evaluation of the controller through example. The example is 
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with respect to a simple mission using the hovering mode capabilities of the vehicle 

including coordination of the activation of a high frequency profiling sonar as part of the 

mission plan. 

A.  THE NPS PHOENIX AUTONOMOUS UNDERWATER VEHICLE 

The Phoenix is the third generation of Autonomous Underwater Vehicles at the 

Naval Postgraduate School. The first was a two foot long craft which had twin screws and 

rudder was used for parameter identification and control research. There was no onboard 

computer or batteries but was attached to a tether which supplied power and control 

commands from an external PC (Healey, et. al., 1989, Brunner, 1988). This is now 

referred to as the AUVI and is no longer in operation at this time. 

In order to experiment with autonomous control a new vehicle was built named the 

AUV II (Healey and Good, 1992) and was much larger, 6.5 feet in length, weighing 435 

lbs and carried it's own batteries and computer. Many untethered tests of this vehicle were 

carried out in the NPS swimming pool during 1990 and 1991 (Healey, et. al., 1991), in 

which waypoint control, steering, diving, and speed control experiments were performed 

and control laws verified. A single process in the onboard computer controlled all 

maneuvers and was written in the C programming language. All data collected from the 

onboard sensors after a run were uploaded using a serial link connected through the access 

hatch. 
In February 1993, the vehicle interior was accidentally flooded and an extensive 

rebuild was undertaken. The vehicle was again operational by October of that year and 

renamed the "Phoenix". Although Phoenix is the same size and weight, and possesses the 

same propulsors as the AUV II, it is a far superior system in the area of computational 

power and data communications. The internal components of the Phoenix are shown in 

Figures 3.1, 3.2 and external views are shown in Figure 3.3. 

The new vehicle contains two computer systems, one the original Gespac with the 

OS9 real-time operating system and the second a Sun Microsystems Voyager SPARC 

station using the Solaris (Unix) operating system. Both computers communicate using 

thinwire ethernet which also extends outside of the vehicle to workstations on the shore 

either through a hard wire connection or using a radio ethernet link. The radio link can be 

either configured to have the antenna mounted to a float for uninterrupted communications 
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while submerged or mounted directly to the hull for better streamlining but only able to 

upload/down load information while surfaced. 

Most of the experimentation done for this dissertation was with a Sun 

Microsystems Britelite portable SPARC workstation, in place of the Sun Voyager, 

operating outside the hull. It was connected to the vehicle with a thinwire ethernet cable 

using a removable water-proof connector. 

1. Propulsion Systems and Sensors 

Six propellers are used for maneuvering the vehicle: two open screws located at the 

stern, two vertical and two lateral cross-body thrusters. All are powered from 24 Vdc 

electric motors, computer controlled using pulse width modulated servo amplifiers. Located 

at the back of each motor is an optical encoder which is used to measure angular speed The 

encoder generates a square wave pulse which is counted by the controlling computer. 

a. Stern   Screws 

Each stern screw is a brass four blade propeller measuring 4.25 inches in 

diameter. These are connected directly to the motor shafts with no reduction and are each 

capable of delivering up to 5 pounds of bollard pull force (Saunders, 1990, Cody, 1992). 

Both may be independently controlled and are able to spin in either direction. 

b. Cross-Body   Thrusters 

The cross-body thrusters consist of a 3 in. ID aluminum tube with a 

centrally located 4 blade brass propeller shown in Figure 3.4. A spur gear is mounted 

around a 3 inch diameter propeller and driven by a pinion connected to a 24 Vdc motor 

giving a 2.5:1 gear reduction. The only seal is located around the motor shaft which leaves 

the propeller, ring gear, and pinion "wet". The propeller shaft is supported by three equally 

spaced struts at each end. These devices were designed and constructed at NPS since there 

were no commercially available cross-body thrusters this small. The twist of the propeller 

blade is symmetric enabling bi-directional operation delivering approximately 1.0 pound of 

bollard pull force in either direction (Healey, et. al., 1995). 
All propulsors are powered by 24 Vdc Pitman PITMO DC Model 14202 series 

electric motors. Each is equipped with Hewlett-Packard Model HEDS-5000 series optical 
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encoders attached to the shaft at the back of the motor to measure angular rate. The 

encoders use a 500 aperture code wheel which is between an LED emitter and integrated 

circuit detector. The detector converts the signals to a square wave output which is 

measured by the computer. 

c. Control Surfaces 

Eight control surfaces are present on the vehicle, four rudders and four 

vertical control planes. Each surface is powered by servo motors used by radio controlled 

model aircraft (Airtronix Model 94501). Since the surfaces are independently powered, the 

rudders are electronically coupled so that when a command to turn is given, the upper and 

lower planes will rotate together. The stern rudders will rotate one direction, and the bow 

rudders in the opposite direction which provides higher turning performance. This 

approach is also employed with the vertical control planes as shown in Figure 3.5. 

d. Sensors 

A full description of all vehicle sensors are given in Appendix D. It covers 

the gyroscopes, speed sensor, short baseline navigation system, and GPS components. An 

expanded discussion of the Tritech ST725 and ST 1000 design and operation is given in 
Chapter V. 

2. Computer System 

A Gespac 68030 microprocessor is used for running the vehicle hardware control 

software. It uses the OS9 operating system which enables real time execution of the 

software. Along with the processor are eleven other Gespac boards interfaced with the 

sensors, motors, control surfaces, networks, etc. A brief description of each board and it's 

primary interfacing function is given in Appendix D. 

The Phoenix has been designed to operate for at least 3 hours on a single battery 

charge. The following section describes The major components of the electrical power 

system are described in Appendix D. 
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3. Hull Integrity 

The vehicle has four access plates located on top of the hull, which are held in place 

by machine screws and are sealed against leakage using a marine grade putty. To ensure 

against leakage through the plate seams, or any other point, the interior is pressurized with 

air to approximately 0.5 lbs above atmospheric. This procedure serves two purposes, one 

is that if the hull is not leak-proof, the pressurized air will escape through the openings and 

can be detected by applying soapy water around the seams to check for bubbles. The 

second reason for pressurization is that if a small opening develops while submerged, the 

air will seep out before water enters the hull. The escaping air will form bubbles that will 

provide a visual queue that a leak is immanent once the internal air pressure drops below 

the hydrostatic pressure. Detection of the bubbles allows for corrective action to be taken. 

B.      THE CONTROL NETWORK EXPERIMENTAL SETUP 

The control system, illustrated in its simplest form in Figure 3.6, is currently 

implemented in hardware using three networked processors. All Execution Level software 

is written in "C" and runs on a Gespac M68030 processor in a separate card cage inside the 

boat. Connected in the same card cage is an ethernet card and an array of real time 

interfacing devices for communications to sensors and actuators indicated in the details of 

Figure 3.7. The Execution Level control code containing a set of functions in a compiled 

module called "exec" is downloaded first, opening the communications socket on the 

Gespac side. This process block sleeps until a network connection is requested from the 

higher level controller in the Sun SPARC. 

The network configuration for the results presented is shown in Figure 3.8. It 

consists of five nodes connected by thinwire ethernet. The Gespac computer inside the 

vehicle is connected to the other systems using a water-proof through-hull connector. The 

DOS PC is used only for OS9 cross-compilation of C code usually developed on an SGI 

Elan or equivalent system. The Elan is also used for displaying in real time the sonar data 

obtained in the Execution Level for missions using the ST 1000 sonar. To further facilitate 

software development and transfer, a wireless ethernet unit is available for Internet 

connections outside of the laboratory. 
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C.       THE TRI-LEVEL CONTROL SYSTEM 

1. Vehicle Primitives 

In previous work (Healey and Marco, 1992(a)), waypoint following in a transit 

phase of a mission was demonstrated in a swimming pool test area where stable behaviors 

of the vehicle were demonstrated including 

a) Forward Speed Control, 

b) Fin_Steering 

c) Fin_Depth_Control 

d) Waypoint_Following 

e) BottomJFollowing, and 

f) Obstacle_Avoidance. 

These control functions were implemented with a)-c) and f) running simultaneously, but 

subsumed by the guidance laws implemented in d); and, with c) subsumed by e). The 

control laws implemented have been based on PD, and Sliding Mode methods as explained 

in (Healey and Marco, 1992(b)). 

Control laws for these functions are readily implemented entirely in the Execution 

Level with digital control algorithms running at 0.1 sec. update rate. Now, more complex 

functions have been enabled using active control of the cross-body thrusters and sonar. 

These are, 

g) Submerge_and_Pitch_Control 

h)  Heading_Control 

i) Longitudinal_Positional_Control 

j) Speed_Control using command generators 

k) Lateral_Positional_Control 

1) Center_Sonar 

m) Ping Sonar (Mode 0) 

n) Ping and Rotate Sonar Clockwise (Mode +1) 

o) Ping and Rotate Sonar Counter-Clockwise (Mode -1) 

p) Ping and Rotate Sonar Through a Sector (Mode 2) 
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q) Initiate_Filter_For_Sonar_Range 

(Needed For Smoothed Range and Range Rate Estimation) 

r)   Reinitialize_Filter 

s)  Track_Target 

t)   XY_Psi_Control 

Most of these functions need a given subset of the actuator system to be active 

under the operation of either an open loop command or a feedback control law. Some of the 

functions use orthogonal sets of actuators and may be activated without conflict. Some use 

the same actuators to control different functions and thus control laws may be additive. 

This means, for example, that vertical thrusters may be used via control laws to control 

depth as well as pitch, and lateral thrusters to control heading as well as lateral position and 

side slip speed. In combination with propulsion motors, most functions including 

Submerge_and_Pitch_Control, Longitudinal_Speed_Control and 

Longitudinal_Position_Control, as well as Heading_Control, may now be commanded 

reliably. Heading_Control, Submerge_and_Pitch_Control, and virtually any multiple 

combination of a) to t) above are available to the extent that they do not cause a conflict of 

actuator control or sensor usage. 

2. Orthogonal Behaviors 

Orthogonal behaviors are defined as those control behaviors that use non-interacting 

subsets of actuators. Even though each may use some common sensory data, orthogonal 

behavior control functions may be activated simultaneously without conflict. An example 

would be Heading_Control (using lateral thrusters), Longitudinal_Position_Control (using 

the propulsion motors) and Center_Sonar. Non-orthogonal behaviors use intersecting sets 

of actuators for control of different error functions and thus control laws can be built up 

from linear combinations of individual control laws - as used for combined heave and pitch 

control using vertical thrusters. 
Activation of orthogonal behaviors are instituted using a script composed of flags 

and set points that are a way of communicating between Tactical Level C functions and the 

real time control loop of the Execution Level. At each pass through the loop, a read is made 

from the communications socket and an if-else structure is used to determine which set of 

sensors, actuators and control laws are to be activated during the computation cycle. The 
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same technique is used to flag the activation of sonars, and filtering actions, and similarly 

for flags to indicate which data streams are to be written in return. 

3. Reactive Behavior Implementation 

Reactive behavior in the controller is handled in three ways similarly to that done in 

the ORCCAD design (Simon, et. al., 1993). 

1. In the Execution Level control loop through command overrides 

following a sensor read, as, for instance, a new obstacle detection requiring 

an emergency surface or obstacle avoidance (flinch) response, 

2. at the Tactical Level, reactive error recovery can be handled by resetting 

key parameters associated with control signal evaluations. An example is the 

resetting of a control gain or the inclusion of integral control if a particular 

error function cannot be stabilized, 

3. reactive behavior is also handled at the Strategic Level for catastrophic 

faults by transitioning to states that command fatal error recovery 

procedures. An example is to surface if, for example, a particular mission 

phase is not completed after a pre-specified time out and all other techniques 

have been exhausted. 

In the results described here, reactive behavior is built in at the Strategic Level by 

time and space traps using time out calls. If an allocated time is exceeded, the mission 

phase fails and the vehicle is commanded to surface. Control overrides are built into the 

Execution Level to surface the vehicle if battery power is too low or if a leak is detected. 

4. Strategic Level 

The Strategic Level Prolog rules are compiled and linked together with the 

supporting Tactical Level "C" language functions into a single executable process called 

"Mission_Control", that is run in a Sun Microsystems SPARC 4 laptop computer and 

linked through an ethernet socket to the Gespac processor (socket "A" in Figure 3.6). 
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Starting "Mission_Control" enables communications between both SPARC and Gespac 

processes. All vehicle control functions, with the exception of the transmission of sonar 

imaging data, communicate by message passing through that socket. The Strategic Level 

Prolog is divided into two parts - first the generic mission controller in Figure 3.9 (Marco, 

et. al., 1996), and secondly, the phase level detail in Figures 3.10-3.12. For clarity, the 

higher level rules are shown in bold type, the C functions in italics, and any user defined or 

built-in Prolog predicates are in plain text. The rule set is first compiled and then run in the 

interpreter by entering the query "execute_mission.". The example mission outlined in the 

figures below consists of three phases: vehicle initialization; submerging to a specified 

depth while maintaining a heading command; and sweeping the profiling sonar head 360 

degrees while still controlling to depth and heading. This is a deliberately simplified 

mission for clarity of explanation. Many more complex missions have been performed 

utilizing the principles outlined here. 
A complete listing and description of each C function callable by Prolog is in 

Appendix E. 

done :- current_phase(mission_abort). 

done :- current_phase(mission_complete). 

execute_mission    :-    initiaIize_mission,    repeat,    execute_phase,    done. 

initialize_mission :- ood('startnetworks',X), asserta(current_phase(l)), asserta(complete(0)), 
asserta(abort(0)). 

execute_phase :- current_phase(X), execute_phase(X), next_phase(X),L 

Figure 3.9 Prolog for the Generic Mission Controller. 
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execute_phase(l)    :-   exec_init_vehicle(X),     exec_start_timer(X),   repeat, 

phase_completed(l). 

phase_completed(l) :- ask_init_vehicle_done(X), X==l,asserta(complete(l)). 

phase_completed(l) :- ask_time_out(X), X==l, asserta(abort(l)). 

next_phase(l) :- complete(l), retract(current_phase(l)), asserta(current_phase(2)). 

next_phase(l) :- abort(l), retract(current_phase(l)), asserta(current_phase(mission_abort)). 

Figure 3.10 Prolog for Phase 1 (Initialize Vehicle Systems). 

execute_phase(2) :- exec_get_setpoints(X),     exec_submerge(X), exec_rotate(X), 
exec_start_timer(X),    repeat,    phase_completed(2). 

phase_completed(2) :- ask_depth_reached(X), X=l, ask_heading_reached(X), X==l, asserta(complete(2)). 

phase_completed(2) :- ask_time_out(X), X==l, exec_surface(X), repeat, ask_surface_reached(X), X=l, 
asserta(abort(2)). 

phase_completed(2) :- ask_sys_problem(X), X=l, exec_surface(X), repeat, ask_surf_reached(X), X==l, 
asserta(abort(2)). 

next_phase(2) :- complete(2), retract(current_phase(2)), asserta(current_phase(3)). 

next_phase(2) :- abort(2), retract(current_phase(2)), asserta(current_phase(mission_abort)). 

Figure 3.11 Prolog for Phase 2 (Submerge to Depth and Rotate to Heading). 
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execute_phase(3) :- exec_get_setpoints(X),     exec_submerge(X), exec_rotate(X), 
exec_set_sonar_mode(X), exec_start_timer(X),   repeat, 

phase_completed(3). 

phase_completed(3) :- ask_sonar_sweep_complete(X), X=l, asserta(complete(3)). 

phase_completed(3) :- ask_time_out(X), X=l, exec_surface(X), repeat, ask_surface_reached(X), X=l, 
asserta(abort(3)). 

phase_completed(3) :- ask_sys_problem(X), X=l, exec_surface(X), repeat, ask_surface_reached(X), X=l, 
asserta(abort(3)). 

next_phase(3) :- complete(3), retract(current_phase(3)), asserta(current_phase(mission_complete)). 

next_phase(3) :- abort(3), retract(current_phase(3)), asserta(current_phase(mission_abort)). 

Figure 3.12 Prolog for Phase 3 (Sweep Sonar). 

Referring to the Prolog code in Figure 3.9, the rule head "execute_mission" will be 

satisfied, and hence the mission completed if the predicates "initialize_mission", 

"execute_phase", and "done" all evaluate TRUE. Once "ood('start_networks',X)" 

completes, phase 1 is asserted to be the current phase (i.e. set to TRUE), then the entire 

rule body of "initialize_mission" is evaluated as TRUE. This action enables the control to 

enter a repeat loop which executes the predicate "execute_phase" attempting to evaluate 

each predicate current_phase(X), execute_phase(X), and next_phase(X), as X assumes the 

values 1 through 3 in sequential order. This particular mission has only three phases, but is 

expandable to include as many phases as desired. 

Each phase includes a "repeat" predicate so that the rules for phase completion are 

evaluated repetitively until one of the rules is TRUE. With the exception of vehicle 

initialization, each phase can terminate in one of three ways: 

1. Normal Completion. Next Action: (Execute Next Phase) 

2. Abort Due to Time Out. Next Action: (Surface Immediately) 

3. Abort Due to System Problem.      Next Action: (Surface Immediately) 

If phase X completes normally, "complete(X)" is asserted and X is incremented by one to 

execute the next phase. Normal completion usually indicates that a commanded set point or 
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task has been accomplished and the vehicle is ready to start the next phase. In the case of 

phase 2, this means that the commanded depth and heading has been achieved. If a time out 

or a system problem occurs, the vehicle is commanded to surface immediately and a 

mission abort for phase X is asserted after the surface is reached. A time out indicates that a 

set point or task is taking too much time to complete and with our current version of error 

recovery, the mission phase is aborted and also the entire mission. System problems can 

cover a variety malfunctions, sensor failures, thruster failures, or any type of hardware 

problem, which for this work, are assumed to be catastrophic requiring an entire mission 
abort. 

After each phase executes, the predicate "done" is evaluated. If the next phase is 

commanded, "done" fails and the cycle continues, if however a mission abort is asserted or 

the mission completes, "done" is satisfied and "execute_mission" evaluates TRUE and the 

entire mission is finished. 

Tasks that are required to be performed in successive phases are commanded again 

as shown by the calls "..exec_submerge(X), exec_rotate(X), .." which appear in 

Phase 2 and 3 (Figures 3.11 and 3.12 ). In this way new set points can be entered for each 

phase. Generally control mode commands are left active until changed although "kill" rules 

can be used to stop actions such as filters etc. 

5. Tactical Level 

The Tactical Level of the control system contains all the C functions that are 

compiled as predicates in the Strategic Level rules, and performs the computations upon 

which the vehicle commands and transitions are based. Additionally, a second SPARC 

process called the "Sonar Manager" is opened which runs asynchronously in the 

SPARC and with equal priority to the "Mission_Control". This process is linked 

through a separate socket ("B" in Figure 3.6) to the Gespac for the purpose of the reception 

and handling of sonar imaging data. The "Sonar Manager" captures data that is sent out 

from the Execution Level as soon as it has been acquired, and then processes and passes 

the data to be displayed on the IRIS Graphics workstation for visualization purposes. 

The introduction of the additional process called "Sonar Manager" and it's 

separation from the "Mission_Control" Tactical Level functions has been found to be 

important and a necessary first step toward a more general Concurrent Tactical Level that 
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was foreseen by the earlier RBM architecture (Byrnes, et. al., 1993(b)) and explained 

recently by (Kwak and Thornton, 1994). The need for concurrency of multiple processes 

lies fundamentally with the fact that sonar data is obtained asynchronously with bounded 

but unknown latency and the servo control functions cannot wait for the sonar port data to 

arrive. While it is perfectly normal to send control set point commands asynchronously to 

stable control loops, waiting for sonar returns could hold up the servicing of the inner 

servo loop commands to actuators. Thus in this solution to the Hybrid control problem, the 

additional "Sonar Manager" process always reads the socket onto which sonar data is 

written so that it is immediately free for another sonar write without delay, and the servo 

loop is made independent of direct involvement with the sonar. As an unpleasant 

alternative, this research has shown that without the "Sonar Manager", all the Tactical 

Level functions would have to be modified to include a check to read sonar data. This 

would have been a cumbersome addition of much unnecessary code writing. One possible 

alternative, yet to be fully implemented, is to allow the primary acquisition of sonar to 

communicate directly and asynchronously in the Tactical Level. However, the drawback of 

that approach would be the difficulty of obtaining high rate sonar updates in servo control 

functions. 

a.  Transition  Criteria 

Most control phase transitions of the Phoenix are event based, meaning that 

a certain set of criteria must be met in order for a transition to occur. A common example of 

this is when a position set point is sent to the vehicle controllers and reached. A method of 

determining whether the vehicle has indeed reached this point must be programmed into the 

control logic. Measuring the position error alone and declaring the maneuver complete 

when this error is small is not sufficient. This is because the vehicle could be overshooting 

the commanded position and simply passing through the set point. Not only must the 

position error be small but the rate error must also be small. This dual criteria can be 

expressed mathematically as a positive definite, linear combination of the position error e 

and the position rate error e. We use, 
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where we and wt are positive weights for the position and rate errors respectively. Eqn. 

(3.1) may be quantized, which allows a minimum value of K, denoted K0, to be specified 

defining a threshold for the combination of errors which can be set relatively large when 

precision control is not required or low for extremely precise positioning. Once K drops 
below K0, the maneuver is declared complete and a transition to the next control phase may 

occur. 

When noisy sensors are used, the noise prevents K from settling enough to 

determine an accurate measurement for the transition, and the use of Eqn. (3.1) alone has 

shown to be unsatisfactory. The signal can be smoothed by filtering K through a first 

order digital filter of the form 

Km+n = e~T/rKm> + (1 ~ e-T/T)Kk (3.2) 

where Kf is the filtered form of K, T is the time constant of the filter, and T is the 

sampling time. The condition for transition can be shown in Figure 3.13, which indicates 
that the signal for transition, s, is 1 (TRUE) for Kf < rcf or 0 (FALSE) for Kf > Kf. As 

J Jo J Ja 

an example, the function "ask_depth_reached(X)", performs the calculations above and 

returns s. Other dynamic error and time based signals are computed similarly. 

b. Mission Data File 

Each phase with the exception of initialization has associated with it 

particular mission parameters. These tend to be set points, phase time-outs, etc. This 

information is obtained by the Tactical Level through the use of a mission data file which 

contains numerical values for each phase. The file is named "mission.d" and has the 

following format for each phase. 
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Timeout (Sec) Xcom(Ft)    Ycom(Ft)     Za 
(Rad) 
(Rad) 

(Ft)    tfu(Rad)    6Ci 

Kf0x(R)    Kf0y(¥t)    Kf0z(Ft)    */0,(Rad)    K} ^ 

SweepJTime (See) Sweep_Mode   ^(Deg)   ¥«,$*&) 
CMX CMY CMZ CMt CMe 

A7x(Sec) Ary(Sec)  A7/z(Sec)  A^(Sec)     Are(Sec) 

yc„m(Rad) 
Kf0 (Rad) 

CMV 

Ar^(Sec) 

At time of initialization the entire file is read and each time the predicate 

exec_get_setpoints(X) is executed, the data for that phase is obtained. For each phase, 

totaling "N_phases", a vector of position and angular set points is defined along with the 
minimum value for the filtered error, Kf0, for each control direction. The values 

Sweep_Mode, y/sll (Deg) and I/AW (Deg) are initial sonar control parameters which may or 

may not change during the phase depending on the mission specification. The "CM" 

(Control Mode) values are either 0, for step input control or 1, which indicates a command 

generator should be used. If command generators are used, the time to complete the 

maneuver may be specified using the AI's in the last row (see Appendix B). With this file, 

many combinations of control can be selected. For example, any phase may use a 

command generator for depth control but not for heading, or this control mode may be 

specified for both. Any combination is possible provided the particular degree-of-freedom 

is controllable. For the case of submergence only, with no provision for the positions X 
and Y to be measured or controlled in the mission specification, the values of Xcom and 

Y are meaningless and any value may be entered. Common practice is to simply enter 

0.0 for the terms not pertinent to a particular phase. 

6. Execution Level 

The structure of the Execution Level software illustrated by Figure 3.7 indicates that 

it is composed of software at the hardware interface (software drivers) as well as software 

for vehicle control. It is the primary set of software that performs real time data acquisition 

and servo control. After initialization of power systems and sonars, and the basic driver 

settings, the PIA card pins that control the on/off features of power supplies, thruster 
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power, screw power, and sonar power, a simple timing loop is entered and reentered at a 

fixed update rate (in our case 0.1 sec). During each loop the following takes place and is 

shown in Figure 3.14. 

1. Read socket "A" for behavior based mode command flags and control set points 

(SOCKET READ BLOCK). 

2. Read all sensors (READ SENSORS BLOCK). 

3. Select appropriate C code control functions for computing and sending control 

values to actuators, using an if-else structure for distinguishing the commands and 

send signals to the sonars to ping and rotate, etc. (CONTROL BLOCK). 

4. Write selected data to local ramdisk/memory or to sockets "A" or "B" as 

appropriate (DATA RECORDING). 

5. Check time for any time based events and wait for the next timing interrupt to 

maintain integrity of the digital control loop (TIMER WAIT). 

Specific control laws as built into callable modules of code are easily selected 

according to the communication flags, provided that they exist in the first place. 

The hardware components of the Phoenix are controlled and interrogated using 

Execution Level C language functions. Each either reads information from the sensors or 

writes commands to the vehicle actuators. The function descriptions are described in detail 

in Appendix F. 

An example of the 3 levels of communication interactions can be seen using 

pseudo-code in Figures 3.15 and 3.16 and from the following code fragments. 

STRATEGIC LEVEL fPROLOG) 

. ..exec_get_setpoints(X)... 

...exec_submerge(X), ... 

...repeat, ask_depth_reached(X),... 

TACTICAL LEVEL (C) 
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int exec_get_setpoints() 
{ 

++current_setpt_index; /* Increment the Set Point Index */ 
return(TRUE); 

} 

int exec_submerge() 

sprintf(command_sent,"%s%f%f',"SUBMERGE",z_setpt[current_setpt_index], 
theta_setpt[current_setpt_index]); /* Command vehicle to Submerge to z_setpt */ 

write_to_execution(command_sent); 
return(TRUE); 

int ask_depth_reached() 
{ 

sprintf(command_sent,"%s","GET_DEPTH_INFO"); 
write_to_execution(command_sent); /* Request Depth Information from Execution Level */ 
read_from_execution(&command_read[0]);     /* Read Reply from Execution Level, Blocking 

Socket */ 
sscanf(command_read,"%F%F",&z_est,&kappa_zf); 

if( kappa_zf < kappa_zf_min[current_setpt_index]) 
{ 

return(TRUE);   /* Within Minimum Error */ 
} 
else 
{ 

return(FALSE); /* Outside Minimum Error */ 

} 

EXECUTION LEVEL (C) 

/* INITIALIZATION BLOCK CODE */ 

/* CONTROL LOOP */ 
while (shutdown_signal_received = FALSE) 
{ 

/* SOCKET READ BLOCK */ 

80 



/* Read Command (If Any) From Tactical Level */ 
read_status = read_from_tactical(&command_read[0]);        /* Non-Blocking Socket Read */ 
if(read_status > 0) 
{ 

sscanf(command_read,"%s",&command[0]); /* Extract the Command Only! */ 
/* Switch to the Appropriate Command Parser */ 
if(!strcmp(command,"SUBMERGE")) 
{ 

sscanf(command_read,"%s %F %F %F %F %d %d", 
&command[0],&z_com,&T_z_f,&theta_com,&T_theta_f, 
&submerge_mode,&pitch_mode); 

DEPTH_AND_PITCH_CONTROL = TRUE; 
} 
elseif(!strcmp(command,"GET_DEPTH_INFO")) 
{ 

sprintf(command_sent,"%f%f',z_est,kappa_zf); 
write_to_sun(command_sent); 

} 

/* CONTROL BLOCK */ 

if(DEPTH_AND_PITCH_CONTROL) 
{ 

/* Use Com_gen Otherwise use z_com as a step input */ 
if(submerge_mode = 1) 
{ 

/* Command Generator */ 
com_gen_z(zO,z_f,T_z_f,&z_com,&zdot_com,&zddot_com,&z_cg_init); 

} 
if(pitch_mode = 1) 
{ 

/* Command Generator */ 
com_gen_theta(thetaO,theta_f,T_theta_f,&theta_com,&thetadot_com, 

&thetaddot_com,&theta_cg_init); 

depth_and_pitch_control(z_com,zdot_com,zddot_com,submerge_mode, 
theta_com,thetadot_com,thetaddot_com,pitch_mode); 

This shows how the Strategic Level communicates with the Tactical Level which in 

turn sends command strings to the Execution Level for submerging control. When the 

Prolog predicate "exec_submerge(X)" is executed, the "C" function in the Tactical Level is 
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called, and writes the command SUBMERGE along with the depth and pitch angle set 

point for the particular phase to the Execution Level. This function then completes and 

having sent the command to the Execution Level, returns a value of TRUE. At this time the 

Execution Level extracts which command has been sent and program control is switched to 

the appropriate command parser block. Since SUBMERGE was sent, the command parser 

expects two set points, depth and pitch angle. Once this command has been received, a flag 

DEPTH_AND_PITCH_CONTROL is set TRUE which activates the associated function in 

the control block and will remain in effect until commanded otherwise. 

7. Socket Communications (Tactical / Execution Level) 

Careful attention must be paid to both sides of a communications socket when 

dealing with synchronous and asynchronous processes. Reading from a "blocking" socket 

causes execution to pause until data is received. In contrast to that, a "non-blocking" socket 

allows execution to proceed if no data is waiting to be read. For synchronous real time 

execution of dynamic processes attempting to make a read every time step, a "non- 

blocking" socket is a requirement. Since the Tactical Level sends commands and receives 

data asynchronously, while the Execution Level must run synchronously at 10 Hz., the 

UNIX side of socket A is configured to be "blocking", while the OS-9 side is "non- 

blocking". For instance, eight different types of socket communications are used by the 

Esterel language mentioned previously (Simon, et. al., 1993). 

Execution of the predicate "ask_depth_reached(X)" sends a request to the Execution 

Level for depth information (GET_DEPTH_INFO). The command is parsed in exactly the 

same way as before except that the Tactical Level function waits ("blocking" socket) for the 

Execution Level to return the values of depth and filtered depth error. A comparison is then 
made between the current filtered error, K^ , and the pre-specified minimum, K^ . and the 

function returns TRUE or FALSE as appropriate. 

8. Human Supervision 

Human supervisory control has not been built into the control system to date. This 

does not mean that it is impossible to do. In fact, user inquiry for the state of the vehicle 

can easily be incorporated into a Tactical Level function that reads an acoustic modem and 

waits for messages to be received. The Strategic Level can include predicates that ask if a 
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user message has been received, and the Tactical Level message can be parsed into 
commands that could call any of the vehicle primitives directly - or specifically - request 
data to be changed. While the architecture supports supervisory control, that is not the main 
focus of this dissertation. 

D.      RESULTS FROM AN EXPERIMENTAL MISSION 

The mission described in this work is one of many used to verify this design of a 
Hybrid controller, and was performed in the NPS hover tank. During execution all 

pertinent data was collected, including depth, heading, thruster motor speed, etc. During 
phases where the sonar is active, the range and heading angle of the sonar head was 
recorded. A log file of mission status messages, a time history of the depth response of all 
three phases, and a plot of the profiling sonar image of the tank was obtained. 

While the mission executes, the process running the Strategic Level displays status 
messages to the screen, while others are written by the Tactical Level C functions. Stored 
in a log file for each mission, the following was obtained with messages from the Strategic 
Level in upper case and in lower case for the Tactical Level. 

?- executejmission. 

INITIALIZE MISSION! 
START NETWORK! 
READ MISSION FILE! 
2 
60.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.1  0.0    0 0.0 0.0 
0 0    00 00 0.0 0.0 0.0 0.0 0.0 0.0 
60.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.1  0.0 0.0 0.1  60.0  1  0.0 0.0 : mission file 
0 0    00 00 0.0 0.0 0.0 0.0 0.0 0.0 

Mission File opened successfully. 

START PHASE 1! 
INITIALIZE VEHICLE! 
INITIALIZE BOARDS! 
TURN ON PROP POWER! 
TURN ON SONAR POWER! 
UNCAGE DIRECTIONAL GYROSCOPE! 
DIRECTIONAL GYROSCOPE UNCAGED. 
ZEROING SENSORS. 
INITIALIZE ST1000 SONAR! 
INITIALIZATION DONE. 
PHASE 1  COMPLETE. 

START PHASE 2! 
current_setpt_index = 0 
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SUBMERGE! 
z_setpt = 2.5 theta_setpt = 0.0 

ROTATE! 
psi_setpt = 0.0 

STARTTIMER! 

DEPTH TRANSITION. 
Depth @ transition = 2.401626 
z_dot @ switch = 0.004895 
kappa_zf @ transition = 0.093 

HEADING TRANSITION. 
Heading @ switch = -0.033422 
r @ switch = 0.003719 
kappa_psif @ transition = 0.084 
PHASE 2 COMPLETE. 

START PHASE 3! 
START SWEEP TIMER! 
SET SONAR MODE! 
START TIMER! 
SONAR SWEEP COMPLETE. 
PHASE 3 COMPLETE. 

DIS-CONNECT NETWORKS! 
MISSION COMPLETE. 

yes 
I?- 

The commanded depth was 2.5 feet with a filtered error threshold 0.1 feet. The set 

points for both pitch and heading angle were 0.0 radians, and the sonar was set to 

continuously sweep clockwise (Mode +1) for 60.0 seconds in phase 3. After the network 

connections to the various processes were established, the mission file was read by the 

Tactical Level. Although this was a three phase mission, only two rows of set points were 

required, since vehicle initialization does not require set point data. 

The first column of the mission data file is the time out for a phase (seconds), the 

next six columns are the set points for longitudinal, lateral, depth, roll, pitch, and heading. 
The second set of six columns are their respective filtered error thresholds, Kf , and the last 

four columns contain the duration of the sonar sweep, the sweep mode, scan direction, and 

sweep width. A log file is used to show the status of the various transitions and numerical 

values for certain variables of interest. Upon completion of phase 3, the network 

connections are terminated and the mission completes. 
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Figure 3.17 shows the time history of the depth and depth rate response. The lower 
trace shows the behavior of the filtered depth error, K4, and the threshold for the filtered 

error, K^. The time axis includes a short time for initialization, and in phase 2 it can be 

seen that K^ starts to reduce as the vehicle begins to submerge at Tr The transition to 

phase 3 is triggered as K^ reaches K^ (T2), when the sonar is activated and an image of 

the test tank walls and a cylindrical object is recorded as shown by Figure 3.18. While this 

phase is active, the depth controller continues to operate and reduces the error beyond the 

threshold of 0.1 feet to nearly zero. Once the sonar sweep time is over, the mission 
terminates at time T3. 

E.       ARCHITECTURE EVALUATION 

It is not an easy task to evaluate a given control system architecture. The theoretical 

design for stability and robustness leads to selection of parameters that are used in the 

control functions of the Execution Level. While stability and robustness of the mission 

control is not easily proven to the same degree as Execution Level functions, the design 

presented here provides the following positive features. 

1) Evaluation of the controller response is provided from the mission data files, 

and all control parameters are in variable form which can be easily changed to tune 

the low level servos. 

2) In this design of the mission control, every phase can be transitioned, by either 

normal completion, a time-out, or by abort. Therefore, no deadlocks are possible 

since the three termination states are all reachable. 

3) When new sensors or actuators are added to the vehicle, the associated data 

input/output can be integrated into the control software by simply creating new 

functions in the Tactical and Execution Levels. Inclusion of the new sensor/actuator 

will not affect the functionality of the existing code, and the input/output 

corresponding the device is obtained by a single point modification of the data 

recording function. 
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4) Only the Strategic Level code requires modification if the mission is altered to 

eliminate, or add, a new phase. Since the phases are essentially generic in structure, 

and can be described by combinations of existing mission primitives, the code 

changes are usually minor. 

5) It is a simple matter to test the performance of a single sensor or actuator set by 

using the corresponding mission primitive in the Strategic Level, while omitting the 

ones that are not of interest. 

6) Conditions that define the transition signals can be easily adjusted by changing 

the entries in the Tactical Level mission data file. As with the control parameters, 

the transition thresholds are in variable form that can be tailored for particular 

operating conditions. 

F.  RELATIONS BETWEEN PROLOG AND PETRI NETS FOR 
STRATEGIC LEVEL IMPLEMENTATION 

So far the mission controller has been represented with Prolog rules. While this is 

the actual language that is used to drive the Strategic Level in real time, there also exists a 

method to graphically model discrete mission events. These models are referred to as Petri 

nets (Murata, 1989), and can sometimes give a more clear and intuitive representation for a 

Strategic Level mission controller. It should be pointed out that using a Petri net graph is 

not intended to replace the Prolog code, but rather provides a different representation of the 

mission controller. The following sections show how Prolog code may be written given a 

Petri net graph, followed by a Petri net analog of the Prolog mission code outlined before. 

It should be noted that our use of Prolog is greatly simplified and so are the Petri net 

representations, being limited to single token places corresponding to the TRUE/FALSE 

evaluations of the predicate rules. 

Three example Petri net graphs and their Prolog representations are shown in 
Figures 3.19-3.21. The circles denoted by P,, P2, ....,Pn are the states or places of the 

Petri net graph and the bars labeled t,, t2,..., tn are the transitions, where a token enters a 

place whenever a transition is fired. The basic technique for writing Prolog code from an 

existing Petri net is manually done and not optimized, but to start at the terminal state(s) and 

work back towards the initial state of the graph (following the backward chaining nature of 

Prolog). While doing this we define "place" and "transition" predicates, where "place" 
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predicates evaluate TRUE if a token resides there, and a "transition" predicate is TRUE if it 

is enabled and the transition has fired. 

Using this approach, Prolog code has been generated for three example Petri net 

graphs. Each Prolog example is driven by executing "mission_complete" which is the rule 

to be satisfied for completion with the predicate "done" repeatedly queried until TRUE. The 

"place" and "transition" predicates are denoted by p(n) and t(n) respectively. The "ask" 

predicate shown in these examples allows the user to interactively activate the firing of a 

transition by typing a 1 for TRUE or 0 for FALSE. 
The Petri net of Example 1 shows two terminal states, P2 and P3, which implies 

that for completion, two instances of the Prolog "done" predicate must be defined, (done :- 

p2. or done :- p3.). Starting with the terminal states and working back, we must determine 

what conditions must be satisfied to reach these states. The precondition for a transition to 
either P2 or P3 requires a token in place Pj. This is assured since the rule for transition tj 

is declared to be TRUE. At this point both transitions t2 and t3 are "enabled" and either 

may fire to move the token to terminal states P2 or P3. 

Example 2 is an OR structure with a single terminal state P2 (done :- p2.) which 

may be reached one of four ways. The first three through transitions t2, t3, or t4, and a 

fourth, directly through t5. This requires the Prolog to have four instances of the rule P2, 

which reflects the OR nature of the Petri net. 
Example 3 is an AND structure with a single terminal place, P3 (done :- p3.), 

where both places P, and P2 must be occupied to enable transition t3. This is described in 

Prolog by the AND (pi, p2) in the rule body of p3. 

In the example mission, completing a phase normally, a phase time out, or having a 

system problem are all examples of a discrete event. In a Petri net graph, these are the 

transitions, the places represent the execution of mission commands such as "submerge", 

"rotate", etc. A Prolog "repeat" loop is also considered to be a place with it's transition 

predicates continually evaluated. Figure 3.22 shows the Petri net graph for the mission, 
which starts with a transition at tj (equivalent to querying the rule "execute_mission"). The 

places Pj, P2 and P3 represent the Prolog phases 1, 2 and 3 and are expanded in detail in 

Figures 3.23, 3.24, and 3.25 respectively. The transitions t2, and ts through t10 denoted 

with a thick line are only evaluated if enabled, and fired when the associated predicate 

becomes TRUE, (X==l). A transition drawn with a thin line fires as soon it is enabled. In 

Petri net notation, we are using a "timed" graph since there are definite time delays between 

the enabling and subsequent firing of some - but not all - transitions. Referring to the 
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expanded Petri net graph of phase 2 in Figure 3.24, the transition t2] will fire when the 

rule "execute_phase(2)" is executed. Once this has occurred, the predicates represented by 
P22 , P23, and Pj4 are all executed and upon completion, the transition t22 fires 

immediately, and the place P25 becomes active. At this point the transitions t6, t7, tM, and 

tM are enabled and the predicates associated with them are evaluated repetitively until one 

of them is TRUE, at which time the respective transition will fire. If a time out or system 
problem does not occur and the desired depth is reached, t23 will fire, and the predicate 

"ask_heading_reached" must also be evaluated repetitively. Since the Prolog repeat 
continues to evaluate transitions, t^ must return a token to P2S causing t6, t7, t^, and 

tM to remain enabled and evaluated. When the heading is reached, tM is fired, t2S is 

enabled, and fires immediately completing phase 2 normally. A similar structure of phase 

completion and error recovery is used in phase 3 as well, which can serve as a template for 

most any mission phase. 

If a time out or system problem occurs in either phase, it is clearly shown that one 
of the transitions t6 through t9 will fire and the "exec_surface" predicate (place Ps) will be 

executed. In this state the predicate "ask_surf_reached" is continually queried until the 
surface is reached at which time the mission is aborted (P6). If all goes well and the 

objectives of phases 2 and 3 are met, the place P4 (mission_complete) is reached and the 

mission terminates normally. 

G. CONCLUSIONS 

The conclusion of the work in this chapter has indicated that complex behavior can 

be readily coordinated through Strategic Level rules, that are easily modified. These act as 

state transitioning mechanisms and the communication through Tactical Level software to 

the Execution Level controllers is a simple but convenient way of commanding stable 

responses of the vehicle. The design of well behaved control laws and functions at the 

Execution Level is essential as a primary part of the design and is affected through careful 

attention to the digital control loop design. Reactivity, failure recovery, and even human 

interfacing within the controller can take place at any level. 

Although the example mission here was simplified so that the details of the code 

and results could be more clearly presented, other more complex missions have been 

performed successfully. 
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Figure 3.4 Section and Front View of the Cross-Body Thruster. 
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Figure 3.17 Vehicle Depth, Depth Rate, and Filtered Error vs. Time Response for 
All Three Phases. 
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mission_complete :- repeat, done. 

done :-P2. 

done :-p3. 

tl. 

pl:- tl. 

P2:- pi, as kC t2(X)' , X), X ==1. 

P3:- pi, as kCt3(X)\ X), X: ==1. 

ask(Q,A) :- - write(Q), write(' ?), nl, read(A), nl. 

Figure 3.19 Petri Net Graph Representation and Prolog Code for Example 1. 
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mission_ complete :- repeat, done. 

done :-p2. 

tl. 

pl:- tl. 

p2:- -Pi. ask('t2(X)', X), X == 1. 
p2:- ■PL ask(' t3(X)', X), X==l. 

p2:- -Pi ask(' t4(X)', X), X == 1. 

p2:- -askCt5(X)\ X) , X == 1. 

ask(Q.A) :- write(Q), writeC 7), nl, read(A), nl. 

Figure 3.20 Petri Net Graph Representation and Prolog Code for Example 2. 
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mission_ complete :- repeat, done, 

done:- p3. 

pi :-ask('tl(X)\ X), X==l. 

p2:-askCt2(X)',X), X==l. 

p3 :- pi, p2, askC t3(X)', X), X == 1. 

ask(Q,A):- write(Q), writeC?), nl, read(A), nl. 

Figure 3.21 Petri Net Graph Representation and Prolog Code for Example 3. 
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execute_mission 

mission_complete 

Figure 3.22 Petri Net Graph Representation of the Prolog Code for the Generic Mission. 
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from tj 

Pn     l execute_phase(l) 

ask_init_vehicle_done(X) 

exec_init_ 
vehicle 

Pis      1 complete(l) 

tot« 

Figure 3.23 Petri Net Graph Representation of the Prolog Code for Phase 
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from t2 

P2I    I execute_phase(2) 

exec_ 
24   7 rotate 

ask_sys_problem(X) 

ask_depth_reached(X) 
t 

tot. 

ask_heading_reached(X) 

complete(2) 

Figure 3.24 Petri Net Graph Representation of the Prolog Code for Phase 2. 
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from t3 

P31     ) execute_phase(3) 

exec_ 
submerge 

exec_ 
timer 

ask_sonar_sweep_complete(X) 
t 

Figure 3.25 Petri Net Graph Representation of the Prolog Code for Phase 3. 
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IV. TRITECH MECHANICALLY SCANNABLE SONARS 

A.      GENERAL DESCRIPTION 

In order to investigate the potential for using commercially available, high 

frequency sonar for controlling position of an AUV, the vehicle was equipped with two 

mechanically scannable high frequency sonar heads built by Tritech Corp. One is an ST725 

scanning sonar and the other an ST 1000 profiler sonar. These sonars have been 

successfully tested in the NPS test tank, the NPS swimming pool, and in the harbors at 

Monterey and Moss Landing, CA. Figure 4.1 shows where the sonar units are located on 

the vehicle with the heads located inside a rubber boot at the upper end of the housings. 

Each head can be scanned continuously through 360 degrees of rotation or swept through 

any defined angular sector, around the central axis of the unit. During normal operation the 

head will ping, wait for return echoes to process, and then rotate a specified angular width 

and repeat. The ST 1000 and ST725 sonars measure approximately 9 inches long by 2.75 

inches in diameter. Both heads are powered by 24 Vdc and communicate with the host 

computer using an RS-232 serial link at 9600 Baud. 

1. ST725  Sonar 

The ST725 sonar operates at a frequency of 725 kilohertz and emits an acoustic 

beam 2.5 degrees wide in the horizontal plane by 24.0 degrees wide in the vertical plane, 

12.0 degrees above and below the horizontal plane as shown in Figure 4.2. This device is 

described as a scanning sonar due to the nature of the range information returned for each 

ping. A scanning sonar operates by placing the intensities of the echoes from each ping into 

discrete segments of range called range bins. For this sonar, the number of range bins is 

nominally 128 but for operating ranges of 10 meters or less, the number of range bins is 

reduced to 64. The maximum operating range of the ST725 is 100 meters with a minimum 

operating range of 6 meters, and provides a resolution of (Maximum Range)/128 or 

(Maximum Range)/64 depending on the range setting used. At the minimum range setting 

used for the majority of the experiments conducted in the NPS hover tank, the smallest 

range resolution was approximately 9 cm. 
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The range bins and associated intensities define a vector of intensities called a 

scanline for a given bearing angle of the head, and is sent through the serial port to the 
controlling computer as a 32 or 64 byte data stream, 64 or 128 bins as appropriate. Each 

byte (8 bit binary) contains the intensity information for two bins, where the first byte, 

(byteO), holds the intensities for binO and binl, the second byte holds intensities for bin2 
and bin3, etc., as shown in Figure 4.3. Since the intensity for each bin is 4 bits wide, the 
intensity value can range only from 0-15 where 15 denotes the strongest return and zero, 

no return. 
In order to more clearly analyze the returns, the data can be thresholded to display 

only returns above a certain intensity value so that significant objects/structures can be 

shown, while other less significant entities (e.g. suspended particles in the water column, 

weak multi-path echoes), are excluded from the display. Combining thresholding with an 

appropriate power setting for the transducer, can usually provide very clear displays. 

Figures 4.4, 4.5, and 4.6 show an ST725 sonar display of the NPS AUV test tank. The 
head was suspended from the vertical catwalk and an aluminum cylinder was placed in the 

tank. Clearly visible are the sides of the tank, with the echoes from the cylinder shown near 
the upper left hand corner of the tank display. A power gain of 13 (0 < gain < 100), and an 
angular step size of 0.9 degrees was used for all three displays, and thresholds 1, 10, and 
15 were used for Figures 4.4, 4.5, and 4.6 respectively. Adjustment of the threshold 
shows the filtering ability of this technique. In Figure 4.4, it is clear that the tank walls are 
highly reflective since there is an apparent continuation of each wall beyond the tank 
boundaries. Also, the effect of the finite resolution is indicated by the short segments at 

constant radius emanating from the sonar head location. 

2. ST1000 Sonar 

The ST 1000 sonar operates at a frequency of 1024 kilohertz and emits a 1.5 degree 

conical acoustic beam as shown in Figure 4.2, and is described as a profiler sonar since 
only the range to the nearest return echo is recorded. With the use of a high frequency ping, 
imaging of objects to a high degree of detail is possible. Operating ranges for the ST 1000 
sonar are from about 1 meter to a maximum of 50 meters, and the unit is pressure rated to 

full ocean depth. 
For each ping, the sonar head returns to the controlling computer a 2 byte data 

stream, which contains the distance to the first return in units of millimeters. Figure 4.7 
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shows an image of the tank sides, along with two objects clearly visible inside the tank. 

The semi-circular shape in the upper part of the display is an aluminum cylinder standing 

vertically in the water column. In the lower part of the display is a line, which is another 

aluminum cylinder lying in the horizontal plane showing the high degree of detail which 

can be obtained from this sonar. Results from work done by (Ingold, 1992), has shown 

that objects can be imaged to a resolution of less than 2 cm. 

B.  COMPUTER CONTROL OF THE SONAR HEAD 

Both sonar heads are rotated with a stepper motor. With a maximum of 400 

steps/rev, the highest angular resolution is 0.9 degrees, although double and triple stepping 

can be enabled resulting in 1.8 or 3.6 degree increments for faster rotation rate. Around the 

stepper motor shaft is a position encoder which returns an ASCII "F" or "T" to the serial 

port each time the motor is stepped. Figure 4.8 shows the locations about the encoder 

where the values of "F" or "T" are returned. Output from the encoder allows the sonar head 

to be centered at the same location upon initialization, and the count of steps either 

clockwise (CW) or counter-clockwise (CCW) is maintained by the controlling software. 

The exact angular position of the head can then be determined at any subsequent time. 

A procedure for centering the sonar head to it's "ahead position" (i.e. the middle of 

the region of T's) is outlined in Figure 4.9. The procedure shown assumes high resolution 

0.9 degree steps but the control software has been generalized to also accommodate 1.8 and 

3.6 degree step size settings and is accomplished with a control function called 
"center_sonar". Once the head is centered, the angular position of the sonar head y/s, is 

defined to be 0.0, (-180.0 < y/t < 179.1 degrees), and the angular position count \j/sc is 

set to 0, (-200 < \j/sc < 199). Each time the head is stepped, y/sc is updated by either +ssiz 

or -ssiz, depending on the direction of rotation. Three step sizes can be programmed, ssiz = 

1, 2, or 4 corresponds to 0.9, 1.8, or 3.6 degrees respectively, which leads to a simple 

relation for calculating the head position in degrees 

V, = 0.9y/sc (4.1) 

There is no external feedback of step count so this method of realizing the sonar heading 

assumes that the motor does in fact step on open loop command. The control software 

developed in this dissertation allows three positioning modes of operation for the sonar 

head, which are: 
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Mode 0: Ping only mode -    Ping sonar at present heading 
only (do not step). 

Mode 1: Continuous sweep mode        -    Ping and step continually 
sweeping   in   a   constant 
clockwise direction. 

Mode -1: Continuous sweep mode       -    Ping and step continually 
sweeping   in   a   constant 
counter-clockwise direction. 

Mode 2: Sector sweep mode -    Ping  each   step   within   a 
defined angular sector. 

Parameter definitions for Mode 2 are shown in Figure 4.10, where yr^ is defined as the 

scan direction, and is the angle that the head position will oscillate with an angular 
amplitude of y/sw, the sweep width. Mode 1 can be achieved, as a subset of Mode 2 by 

simply specifying y/stl with yssw set to 0.0. It thus follows that the values of y/sd, y/sw and 

the positioning mode can be dynamically changed at any time as needed according to the 

context of the mission control. 

1.       Sonar Control Functions in Detail 

Both the ST725 and ST 1000 sonar heads can be controlled using a small set of 

ASCII character commands sent over the serial line. The sonar(s) do not have automatic 

modes to continuously ping and rotate given a single command. Therefore, the head must 

be commanded through the serial port to ping and/or rotate for each time. Below is a list of 

the commands available for position and pinging control for both heads. 

ST 1000 Commands: 

"+"      Rotate 1 Step Clockwise without Pinging. Returns 1 Byte Encoder 
Character, "T" or "F". 

Rotate 1 Step Counter-Clockwise without Pinging. Returns 1 Byte 
Encoder Character, "T" or "F". 

"Z"     Ping Once Without Stepping. Returns 2 Byte Range. 

")"      Ping Once Then Rotate 1 Step Clockwise. Returns 2 Byte Range 
followed by a 1 Byte Encoder Character, "T" or "F". 
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'("      Ping Once Then Rotate 1 Step Counter-Clockwise. Returns 2 Byte 
Range followed by a 1 Byte Encoder Character, "T" or "F". 

ST725 Commands: 

ti  ,  ii +"     Rotate 1 Step Clockwise without Pinging. Returns 1 Byte Encoder 
Character, "T" or "F". 

"-"       Rotate 1 Step Counter-Clockwise without Pinging. Returns 1 Byte 
Encoder Character, "T" or "F". 

"S"     Ping Once Without Stepping. Returns 32 or 64 Byte Range Bins. 

"R"     Ping Once Then Rotate 1 Step Clockwise. Returns 32 or 64 Byte 
Range Bins followed by a 1 Byte Encoder Character, "T" or "F". 

"L"      Ping Once Then Rotate 1 Step Counter-Clockwise. Returns 32 or 64 
Byte Range Bins followed by a 1 Byte Encoder Character, "T" or 
"F". 

In order to ease operation, several "C" language functions have been written to 

coordinate control of the heads. The following is a list of the functions and parameter lists 

for use in the vehicle Gespac computer. Using the function 

center_sonar (pafÄ); 

commands the sonar head rotate to the ahead position, where path - Serial port number, 

and can be used to center either the ST725 or ST 1000. The function 

stl000_sonar_command = set_stl000_mode( 
stl000_sweep_mode, 
stl000_scan_direction, 
stl 000_scan_width, 
&stlOOO_psi_sonar_min, 
&stl000_psi_sonar_max); 

is used to determine which command to send to the ST 1000 head based on the parameters 

given by: 

stl000_sweep_mode        =   Sweep Mode 0,1,-1,2 
stl000_scan_direction     =   Scan Direction, y/sd, 0.0...360.0 Degrees 
stl000_scan_width =   Scan Width, yAw, 0.0...360.0 Degrees 
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If the sweep mode is 2, the values of stlOOO_psi_sonar_min and 

stlOOO_psi_sonar_max are calculated and returned based on scanj&irection and 

scan_width . If mode 0 is used, stlOOO_sonar_command is set to "Z", if mode 1 or 

-1, the commands")" or "(" are returned. The character "Z" is returned for mode 2 and the 

following function must be called each time step to update the command to the head. 

stlOOO_sonar_command = stlOOO_sweep_control( 
stl 000_psi_sonar, 
stlOOO_psi_sonar_min, 
stlOOO_psi_sonar_max); 

where stlOOO_psi_sonar = Current Angular Position of the head. 

update_stlOOO_position(sf 7000_sottar_c07nj»a/zd,
5 

&stlOOO_psi_sonar_count, 
stl000_ssiz); 

updates the head position stlOOO_psi_sonar_count based on 

stlOOO_sonar_command and stl000_ssiz, where 

stlOOO_psi_sonar_count = Integer count of head position 0...400, incremented by 

+stl000_ssiz if stlOOO_sonar_command is ")", -stl000_ssiz if "(", and 0 if the 

command is "Z". stl000_ssiz is 1, 2, or 4 for step sizes 0.9, 1.8, and 3.6 degrees 

respectively. 

ping_stl000_sonar(.sf2000_sonar_command  ); 

sends command stlOOO_sonar_command to the ST 1000 head. 

stlOOOjrange    = read_stl000_sonar(); 

reads the range from ST1000 and returns it in stlOOOjrange. The pinging and reading 

functions have been separated since other calculations and sensor reading may be 

performed during the waiting time for the sonar return. 

The ST725 uses basically the same functions outlined above but since some of the 

ASCII commands used for this head differ from the ST 1000, different function names 

must be used. A call to the function 
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st725_sonar_command   = set_st725_mode( 
st725_sweep _mode, 
st725_scan_direction, 
st725_scan_width, 
&st725_psi_sonar_min, 
&st725_psi_sonar_max   ); 

determines which command to send to the ST725 head based on the parameters given by: 

st725_sweep_mode     =   Sweep Mode 0,1,-1,2 
st725_scan_direction =   Scan Direction, y/sil, 0.0...360.0 Degrees 
st725_scan_width       =   Scan Width, y/sw, 0.0...360.0 Degrees 

(NOTE: Same as with the ST 1000) 

If the sweep mode is 2, the values of st725_psi_sonar_min and 

st725_psi_sonar_max are calculated and returned based on scan_direction and 

scan_width . If mode 0 is used, st725_sonar_command is set to "S", if mode 1 or 

-1, the commands "R" or "L" are returned. The character "S" is returned for mode 2 and as 

with the ST 1000, the following function must be called each time step to update the 

command to the head. 

st725_sonar_command = st725_sweep_control( 
st725_psi_sonar, 
st725_psi_sonar_min, 
st725_j)si_sonar_max); 

where 

st725_psi_sonar = Current Angular Position of the Head. 

The function 

update_st725_position(sf 725_sonar_command, 
&st725_psi_sonarjcount, 
st725_ssiz  ); 

updates the head position st725_psi_sonar_count based on st725_sonar_command 

and st725_ssiz, where st725_psi_sonar_count = Integer count of the head position 

0...400, incremented by +st725_ssiz if st725_sonar_command is "R", -st725_ssiz 
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if "L", and 0 if the command is "S". st725_ssiz is 1,2, or 4 for step sizes 0.9, 1.8, and 

3.6 degrees respectively. The function call 

ping_stl25_sonar(st725_sonar_command); 

sends command st725_sonar_command to the ST725 head. Calling 

read_st725_sonar(&st725_range [0] ); 

reads the range bins from the ST725 and returns them in array st725_range . 

2. Sonar Initialization 

Before any sonar data may be collected, the head must be initialized with the 

appropriate parameters for a given operating range. Range settings for the scanning sonar 

(ST725) are from 6 to 100 meters, while for the profiler sonar (ST 1000), the settings range 

from 1 to 50 meters. Tables 4.1, 4.2, and 4.3 list the initialization parameters for these 

ranges, and the sequence of initialization is outlined below using a function, 

send_st725() and send_stl000(), which is used to send characters or numbers to the 

head. Comments and the data type of values to send are to the right. Three different data 

types are used, Char (1 byte ASCII), Byte (1 Byte Binary), and Word (2 Byte Binary). 

The reader can refer to Appendix G for a detailed listing of the standard sonar commands. 

ST725 Head Initialization Sequence: 

1 send_st725('P'); Send Sonar Parameters (Char) 

2 send_st725(TxPulse); Send TxPulse Length (Word) 

3 send_st725(NSAMPL); Send NSAMPL (Byte) 

4 send_st725(NBINS); Send NBINS (Byte) 

5 send_st725(Range_Code); Send Range.Code (Byte) 

6 send_st725(checksum); Send checksum (Byte) 

7 send_st725('X*); Enable Time Varying Gain Mode 

(Char) 

8 send_st725('K'); Set mode return Range bin Peak 

(Char) 
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9 send_st725('E'); 

10 send_st725(212); 

11 send_st725('C'); 

12 send_st725(gain); 

ST 1000 Head Initialization Sequence: 

1 send_stl000('P'); 

2 send_stl000(TxPulse); 

3 send_stl000(NSAMPL); 

4 send_stl000(NBINS); 

5 send_stl000(Range_Code); 

6 send_stl000(checksum); 

7 send_stl000('X'); 

8 send_stl000('K'); 

9 send_stl000('E'); 

10 send_stl000(212); 

11 send_stl000('J'); 

12 send_stl000(ECPULS); 

13 send_stl000(TIMOUT); 

14 send_stl000(LOKOUT); 

15 send_stl000(ESWAIT); 

16 send_stl000(GECMIN); 

17 send_stl000(GAINDT); 

18 send_stl000(ECSCLX); 

19 send_stl000(ECSCLY); 

20 send_stl000(Maxdst); 

21 send_stl000(DACSCX); 

22 send_stl000(DACSCY); 

23 send_stl000(Rng_unit); 

24 send_stl000(checksum); 

Set Final Gain for TVG (Char) 

Gain Based on 0..255 (Byte) 

Set Initial Gain for TVG (Char) 

Gain Based on 0..255 (Byte) 

Send Sonar Parameters (Char) 

Send TxPulse Length (Word) 

Send NSAMPL (Byte) 

Send NBINS (Byte) (If in Scanning 

Mode) 

Send Range_Code (Byte) 

Send checksum (Byte) 

Enable Time Varying Gain Mode 

(TVG) (Char) 

Set mode return Range bin Peak 

(Char) 

Set Final Gain for TVG (Char) 

Gain Based on 0..255 (Byte) 

Send  Profiler  Sonar  Parameters 

(Char) 

Send ECPULS (Word) 

Send TIMOUT (Word) 

Send LOKOUT (Word) 

Send ESWAIT (Word) 

Send GECMIN (Byte) 

Send GAINDT (Word) 

Send ECSCLX (Word) 

Send ECSCLY (Word) 

SendMaxdst (Word) 

Send DACSCX (Word) 

Send DACSCY (Word) 

Send Rng_unit (Byte) 

Send checksum (Byte) 
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The duration of the acoustic transmission pulse is defined by TxPulse length 
(H sec) as shown in Figure 4.11. TIMOUT (ß sec) is the maximum time to wait for returns 

after the pulse has been sent, and is approximately equal to 2*Max Range/c. LOKOUT 
(l± sec) is the amount of time for the pulse to travel before meaningful results are obtained, 
which is typically set to 400 ,usec. Using this setting, returns from less than about 0.6 

meters from the head will be ignored. The value LOKOUT = (minimum distance)/c. 
ES WAIT (//sec) is the wait time for the head to index in autoechosounder mode (Not 

Applicable). GECMIN is the output power gain equal to 2.55*gain, where 0 < gain < 100. 

Checksum is the lower 8 bits of the sum of the initialization values previously sent. For the 

ST725 and the ST 1000, the values sent in steps 2 through 5 are used, and for the ST 1000, 

an additional checksum is calculated based on the values sent in steps 12 through 23. 

Table 4.1 Initialization Parameters for Scanning Mode (ST725 and ST1000 Heads) 

Operating 
Range (m) 

TxPulse 
(1.96 yUsec) 

NSAMPL NBINS Range 
Code 

6 30 1 64 0 
10 30 3 64 1 
20 100 3 128 2 
25 125 4 128 3 
30 150 6 128 4 
50 250 12 128 5 
100 475 26 128 7 

Table 4.2 Initialization Parameters for Profiling Mode (ST 1000 Head) 

Operating 
Range 

(m) 

TxPulse 
1.96 
jüsec 
units 

NSAMPL NBINS Range 
Code 

TIMOUT 
(^sec) 

Maxdst 
(mm) 

1 30 64 00 1500 1500 
2 30 64 01 3000 3000 
4 30 128 02 6000 6000 
6 30 128 03 9000 9000 
10 40 128 04 15000 15000 
20 50 3 128 05 30000 30000 
30 75 6 128 06 45000 45000 
50 100 12 128 07 65535 65535 
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Table 4.3 Values Common to all Range Settings for ST1000 Sonar 

ECPULS 1.96 |i sec units 30 
LOKOUT (p. sec) 200 
ESWATT 1.96 |i sec units 25600 
GECMIN 2.55*gain 
GAINDT 64 
ECSCLX 16383 
ECSCLY 11374 
DACSCX 256 
DACSCY 3125 
Rng_unt 0 

The initialization sequence previously outlined is performed for both heads using 

the following function: 

iniüalize_sonar(port,mode,max_range,gain,&Nbins) 

Input Values: 

port 

mode 

max_range 

gain 

Output Values: 

Nbins 

RS232 communications port number (int) 

Scanning "S" or Profiling "P" (char) 

Maximum range setting (int) 

Sonar power gain 0..100 (int) 

Number of scan bins to collect 64 or 128 

for the particular initialization (int) 

3. Implementation of Sonar Functions 

The functions previously described are designed to operate in a control loop where 

the sonar control functions are called once per time step. Experience has shown that the 

fastest the sonar can be operated within 6 meters is 0.1 seconds, which allows enough time 

for the head to ping, receive and process a return, then step. Therefore, if both sonars are 

to be used and the time step of the control loop is only 0.1 seconds, only one sonar may be 

operated per time step. A limitation that can be easily remedied by operating each head once 

123 



every other time step or simply increasing the time step value. The latter solution may not 
be appropriate if the sonar is used for position feedback in a vehicle control system due to 

stability requirements based on update rates. It has then been suggested that one sonar be 
used during one phase of a mission and then switching to another for a different phase. An 

example of this would be to use the ST725 scanning sonar for large area search and once a 

target of interest has been found, the ST 1000 would take over for more detailed 

imaging/servoing once in close proximity of the target. Another solution is ping the 
sonar(s) at the beginning of the control loop, perform other calculations and then read the 

returns at the end. It is this method that is used with the NPS Phoenix, and the structure is 

outlined below with the following C code fragments: 

st725_port = open('7t2",S JWRITE+S JREAD); 

stl000_port = open(7t3",S_IWRITE+S_IREAD); 

center_sonar(sf 725_port); 

center_sonar( stl 000_pori); 

initialize_sonar(st725_port,'S',st725_max_range,st725_gain, 

&st725_Nbins); 

initialize_sonar(stlOOO_port,'P',stlOOO_max_range, 

stl000_gain,&stl000_Nbins); 

START OF MISSION LOOP: 

stl000_sonar_command = set_stl000_mode( 

st 1000_sweep_mode, 

stl000_scan_direction, 

stl000_scan_width, 

&stl000_psi_sonar_min, 

&stl 000_psi_sonar_max); 

st725_sonar_command = st725_sweep_control( 

st725_psi_sonar, 

st725_psi_sonar_min, 
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st725_psi_sonar_max); 

update_st725_position(st725_sonar_command, 

&st725_psi_sonar_count, 

st725_ssiz); 

update_st 1000_position(st 1000_sonar_command, 

&stlOOO_psi_sonar_count, 

stlOOO_ssiz); 

ping_st725_sonar(st725_sonar_command); 

ping_st 1000_sonar(st 1000_sonar_command); 

(Perform other calculations while waiting for sonar return) 

read_st725_sonar(&st725_range [0]); 

read_stl000_sonar(&stl000_range [0]); 

st725_psi_sonar = 0.9*st725_psi_sonar_count; 

stl000_psi_sonar = 0.9*stl000_psi_sonar_count; 

END MISSION LOOP: 

close(st725_port); 

close(stl000_port); 

Experience with both the sonars on the Gespac computer has shown that the heads 

do not always return the correct number of bytes when requested. Sometimes no, less than, 

or more bytes are returned for a given ping command, and can lead to "locking up" of the 

controlling process if the serial read function attempts to read more bytes than are present in 

the buffer. For example, the program can not simply assume that 3 bytes of data will 

always arrive when the ST1000 head is issued the command "L", which should return 2 

bytes of range data and 1 encoder byte. Occasionally only 2 bytes will arrive for the 
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command, and if the read function attempts to read 3 bytes, the process will hang 

indefinitely since the third, expected byte never arrives. The following code fragment of the 

function read_profile_sonar() outlines the steps taken to ensure robust operation of the 

ST 1000 sonar head. 

read_profiIe_sonar() 

{ 

n_bytes = _gs_rdy(stl000_path);    /* Check How Many Bytes are on The Port */ 

timeout = 0;        /* Initialize the Timeout Counter */ 

RESETJPORT   =    FALSE;       /* Assume the Port Does Not Need to be Reset */ 

while(n_bytes < profile_sonar_bytes_expected)    /* Loop Until Data is There */ 

{ 

tsleep(2);      /* Wait for 0.02 seconds */ 

n_bytes = _gs_rdy(stl000_path);    /* Check How Many Bytes are on The Port */ 

/* Reset the Port if an Insufficient Number of Bytes Have Arrived Within the Allotted 

Time */ 

if((timeout = 1) && (n_bytes != profile_sonar_bytes_expected)) 

{ 

RESET_PORT   =    TRUE; 

break; 

} 

timeout = timeout + 1;     /* Increment the Timeout Counter */ 

} 

if(RESET_PORT) 

{ 

stl000_range = 0.0;   /* Set The Range To Zero By Default Since No Range 

Available */ 

close(stl000_path);    /* Close The Serial Port Path */ 

stl000_path = open(7t3",S_IWRITE+S_IREAD);     /* Reopen The Path */ 

n_bytes = _gs_rdy(st 1000_path);     /* Check The Newly Opened Port And Check For 

Any Stray Bytes */ 

if(n_bytes != -1 ) n=read(stl000_path,x,n_bytes); /* Read Them If There To Ensure a 
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Clean Start On The Next Read */ 

n_bytes = -1;       /* Set n_bytes = -1 To Fail If Statements To Follow */ 

if(n_bytes = profile_sonar_bytes_expected) 

{ 

/* Read The Range From The Sonar */ 

} 

if(n_bytes > profile_sonar_bytes_expected) 

{ 

/* An Incorrect Number Of Bytes Has Arrived In The Buffer */ 

/* Clear Them Out By Reading Them */ 

stlOOO_range = 0.0;   /* Set The Range To Zero By Default */ 

} 

profile_sonar_pinged = FALSE;      /* Signify that the Head has Been Read */ 

return(stlOOO_range); /* Return the Range */ 

} 

Extensive tested of this code has been done, and operates extremely well. No port 

lockups have occurred since it's implementation. 

C. CONCLUSIONS 

This chapter has presented a detailed overview and description of the Tritech ST725 

and ST 1000 sonars. Example sonar images have been given along with the data formats for 

both units, along with useful computer functions for controlling and initializing each sonar 

head. 
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Figure 4.1 Location of the Tritech Sonar Heads on the NPS Phoenix. 
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Figure 4.2 Sonar Beam Shapes for the ST725 and ST 1000 Sonars. 
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Figure 4.3 Scanline Data Structure of the ST725 Sonar. 
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ST-725 Sonar Display 

Range    :  C. • ■ 
Ring*    :  1. 5 ■ 

Res        : High 

Gain      :  13 

Thresh :  1 

Figure 4.4 ST725 Sonar Display of the NPS Test Tank for Threshold = 1. 
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ST-7Z5 Sonar Display 

Rang«    :  6. • ■ 

Ring«    :  1. 5 ■ 
Rea        : High 

Cain      :   13 

Thresh :   10 
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Figure 4.5 ST725 Sonar Display of the NPS Test Tank for Threshold = 10. 
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5T-72S Sonar Display 

Rangt : C.I ■ 

Ring« : 1. 5 ■ 

RM   : High 

Cain  : 13 

Thraah : 15 

Figure 4.6 ST725 Sonar Display of the NPS Test Tank for Threshold = 15. 
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ST-1M0 Sonar Bisplay 

Rang« : 8. 0 ■ 
Ring* : 1. 5 ■ 
Res   : High 

Cain  : 13 

Thraah : 15 

Figure 4.7 ST 1000 Sonar Display of the NPS Test Tank. 
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Figure 4.8 Sonar Head Encoder Definitions. 
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Figure 4.9 Method to Align the Sonar Head to the Ahead Position. 
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Figure 4.10 Sector Sweep Mode Variables. 
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Figure 4.11 Transmitted Pulse Description. 
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V. CONTROL SYSTEM EVALUATION 

Results from a series of in-water experiments using the Phoenix underwater vehicle 

are presented in this chapter. All tests used the tri-level control structure described in 

Chapter IE, and were performed in the NPS test tank. The series was conducted to evaluate 

the performance of sliding mode control designs for submergence, rotation, and 

longitudinal positioning of the vehicle to a prescribed stand-off distance from an object. 

These are typical maneuvers that an AUV will be required to perform for ocean intervention 

and inspection tasks. Since the high level controller must rely on a stable, and well tuned 

autopilot to perform maneuvers, the closed-loop servo level controllers must exhibit 

predictable and well understood behavior. This then frees the mission designer to focus on 

specific mission objectives. 

The chapter opens with a discussion of the experimental setup, which includes 

descriptions of the test tank, computers and network, and is followed by a brief explanation 

of the steps taken to prepare the vehicle for testing. The second section addresses the issues 

surrounding the design of a software filter for depth rate estimation, using signals from the 

vehicle pressure transducer. This analysis leads to a determination of the best filter design 

as the basis for "in vehicle" implementation and experimental validation. 

The next section contains results from submergence, rotation, and longitudinal 

motion control experiments. The effects of varying the sliding mode control gains and 

system parameter estimates for each control mode are presented and the best values to use 

are determined. The pertinent sections of the Strategic Level Prolog codes used for each 

experiment are given and explained. Following this are results from simultaneously 

submerging and rotating the vehicle to a specified depth and heading. The controller for this 

maneuver utilizes command generators, which will ensure that the desired position and 

heading will be achieved at the same time. 
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A.      EXPERIMENTAL SETUP 

1. NPS AUV Test Tank 

All vehicle experiments were conducted in the NPS test tank, which is constructed 

of 1/4" steel plates, measures 20 feet square with an open top, and is filled with fresh water 

to a depth of five feet. The water is continuously circulated and chemically treated using 

readily available swimming pool pumps and filters. The tank stands on the floor and has 

two Plexiglas windows located on the sides for observation. To enable ease of vehicle 

manipulation by laboratory personnel, a cat walk is located across the top of the tank. 

Placement and retrieval of the vehicle from the water is achieved by using an electrically 

powered hoist that is attached to a movable carriage, which rolls along a beam that extends 

across the entire length of the tank. Gridlines are marked on the tank bottom and sides to 

provide a reference background to improve observation of vehicle motions. 

2. Computer Network 

The computer network configuration used for the experiments is shown in Figure 

3.8. It consists of five nodes connected by thinwire ethernet for network communications 

using TCP/IP. This arrangement allows communications between any of the nodes at any 

time, even while the experiment is ongoing. Since two computers are needed to implement 

the tri-level control structure, the Execution Level, residing in the Gespac must 

communicate with the system running the Strategic and Tactical Levels (Sun SPARC). At 

the time these experiments were performed, only the Gespac computer was located onboard 

the vehicle and was connected to the rest of the network using a water-proof, thinwire 
connector. 

For missions using the ST 1000 sonar, an SGI Elan workstation is used for 

displaying, in real time, the sonar data collected in the Execution Level. Installed on the 

DOS PC is a cross-compiler/linker which converts C language source code files into 

executable images which will operate on OS9 based systems. It is here that the Execution 

Level software is compiled and linked. The source code is usually developed on the SGI 

Elan or equivalent system. A radio ethernet unit is used for network connections to the 
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Internet, and has made data transfer between facilities very fast and convenient, especially 

if software is developed on remote systems. 

3. Pre-Mission Procedures 

Before an experiment can be performed, the required software must be present in 

each computer and the network communications enabled. Since the Gespac computer has 

no hard disk, and uses a volatile ram disk for data and program storage, each time the 

system is powered, the Execution Level software must be reloaded. The data transfer is 

done through the network using ftp (File Transfer Program), usually from the PC, since it 

is there that the software was cross-compiled. Upon power up, the Gespac boots from a set 

of EPROM's located on the CPU board which contains the system boot file, operating 

system, and network software modules. Once the boot process is complete, a ramdisk is 

created and the network is automatically started allowing connections from remote systems 

possible. The SPARC station on the other hand, boots from it's internal hard drive, where 

the Strategic and Tactical Level software already resides, so no program loading is 

required. 

The Execution Level program is not the only software that needs to be loaded into 

the Gespac. Various modules known as "device descriptors" must be also present to 

provide an interface between application programs and hardware devices. Descriptors for 

the sonar and DiveTracker serial ports, and configuration information for the creation of 

additional ramdisks are required. These modules are transferred along with the Execution 

Level software using an ftp script known as "exec.ftp", which allows all modules to be 

downloaded using a single command. Once this is complete, the Gespac system is ready 

for the Execution Level program to start. At this point, the procedures for mission 

execution outlined in Chapter El are performed. 

B.       SUBMERGENCE CONTROL 

In this section, vehicle submergence control using the two vertical thrusters is 

discussed. Here, the term submergence control is used rather than "depth control", to 

distinguish between the use of vertical thrusters rather than fins, which in a normal flight 

mode would be used to control depth. No forward motion is assumed, so the control 

planes are ineffective in this scenario. The sensor used for this mode is a depth cell utilizing 
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a pressure transducer. Since proper positional control of the vehicle requires some form of 

rate feedback, a digital software filter must be designed to smooth the noise contaminated 

depth measurement and extract the rate of change of depth from this signal. 

1. Filter Design 

The purpose of the filter is twofold. Firstly, and most important, an estimate of the 

depth rate must be extracted from the primary sensory output, and secondly, depending on 

the circumstances, noise in the primary sensor must be smoothed. In this section, a 

discussion of the effects of filter bandwidth is given first, and examined through the use of 

hard experimental data from earlier maneuvers of the NPS Phoenix. Thus realistic noise 

levels are taken into account. 

The filter model is based on a three state kinematic model for depth changing 

excited by acceleration noise, 

hit) = z2(0 
z2(t) = z3(t) (5.1) 

li(0 = qit). 

The states £,(?), z2(t) , and z3(t) are estimates of the position, velocity, and acceleration 

of the depth signal z(t). The measurement equation with z(t) being the depth signal is 

z(t) = zy(t) + v(t) (5.2) 

where q(t) is taken to be the covariance of the system noise and v(t) is the covariance of 

the measurement noise. These equations are the basis for the formulation of a Kaiman filter 

(Gelb, 1988). The values of q(t) and v(t) must be carefully chosen so the bandwidth of 

the filter is appropriate for the nature of the depth signal. If the system noise was large, 

with low measurement noise, the filter response would be quite fast. Decreasing the system 

noise and increasing the measurement noise will create the opposite effect and will result in 

a sluggish slow responding filter. The depth signal does contain some noise, specifically 

due to quantization of the analog pressure transducer voltage to it's digital representation in 
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the controlling computer. Therefore the filter must be tuned for the quantization resolution 

of the analog to digital converter. 

The state space representation of Eqns. (5.1) and (5.2) is 

i{t) = Az(t) + Bq(t) 

z(t) = Cz(t) + v(t), 

(5.3) 

(5.4) 

where 

and the covariances, 

Z(t)   €  W*1, 

\q(t)\ 

Ut)V 

is assumed to be of zero mean, Gaussian white noise, uncorrelated, and 

A = 

'0 1 0' ~0 

0 0 1 ,     B = 0 

„° ° °. 1 

,      C = [7   0 0] 

For implementation of the execution level control functions, data is sampled at a 

fixed rate, 10 Hz, and it follows that the discrete time approximation of Eqns. (5.3) and 

(5.4) is required. The discrete time formulation using a sampling time of 0.1 seconds is 

zk+i = ®Zk + r<lk (5.5) 

zk = Hzk + vk (5.6) 
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where 

0   = 

1.000 0.100 0.005 0.0002 

0.000 1.000 0.100 ,  r = 0.0050 ,   H = [1   0 0] 

0.000 0.000 1.000 0.1000 

With the model defined, an optimal estimate of the state zk, conditioned upon data 

Zk, can be obtained using a Kaiman filter as based on a recursive weighted least-squares 

solution. (Developed in more detail in (Gelb)). The equation for the state estimate is 

zk = zk + Lk(zk - Hzk) (5.7) 

where zk is the kinematic model based expected value of zk conditioned upon a prior 

estimate zk_, without correction from the measurement zk. is obtained from 

zk = <Pzk_n (5.8) 

and the correction is based on the residual zk - Hzk, multiplied by the optimal (minimum 

variance of the estimation error) gain. 

The Kaiman filter gain is then given by 

Lk = MkH
T(HMkH

T + vky' (5.9) 

where Mk is the model based propagated state error covariance matrix 

Mk = 0Pk_,<PT + rqk_,rT, (5.10) 

and Pk is it's corrected value after measurement and is given by 

Pk = Mk - MkH
T(HMkH

T + vkr
lHMk (5.11) 
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Inspection of Eqns. (5.9) and (5.10) shows that one matrix inverse computation 
involving Lk is required each time step to update the estimate of the state which can 

consume valuable computing time. Fortunately, experiments with real data have shown 

(Figure 5.1), that after an initial settling time, the gains reach steady state values and, as 

such, may be pre-computed and stored as data rather than requiring a step by step update. 

Three filter designs have been studied and are presented to illustrate the effects of 

varying the system and measurement noise. The filters are applied to actual experimental 

data obtained from the depth cell for a dive of 2.0 feet, as shown in Figure 5.2. The 

assumed noise levels for the three designs are as follows 

Filter 1 (Slow) 

Filter 2 (Medium) 

Filter 3 (Fast) 

qk =0.1, 

qk =0.1, 

qk  = 10.0, 

v, = 10.0 

vk =0.01 

vk =0.001 

which lead to bandwidths of approximately 0.2, 0.6, and 1.7 Hz respectively. The 

associated steady state filter gains are: 

Filter 1  L = 

0.0887 

0.0411 

0.0095 

Filter 2 L = I 

0.2544 

0.3727 

0.2731 

Filter 3  L = 

0.6042 

2.7513 

6.2909 

Results showing the estimated depth and depth rate for Filter 1 is shown in Figure 

5.3. Comparing the depth estimate with the raw signal show this filter is too slow as 

evident from the lags present. The response is slightly oscillatory and does not track the 

real signal very well, and the rate also shows some oscillatory behavior during the steady 

state interval. Figure 5.4 shows the response for Filter 2, and displays a marked 

improvement over the previous filter, because the depth estimate follows the raw signal 

very closely, although the rate estimate shows some sign of the sensor noise. Filter 3, is 

shown in Figure 5.5, and again the depth estimate closely follows the raw signal, but the 

rate estimate is very poor since the quantization noise is strongly imparted to this estimate. 

To more fully understand the performance of the three filters, a frequency response 

analysis has been performed. Figures 5.6 and 5.7 show the log-magnitude and phase angle 

plots for the depth rate estimate of the three filters. It can be seen from the plots that Filters 

1, 2, and 3 exhibit increasing bandwidths. Although Filter 3 has the largest bandwidth it is 
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so large that it is faithfully reproducing the noise of the sensor and should not be used on 

these grounds. The Medium filter has a smaller bandwidth and is much less affected by the 

noise, and is the filter of choice for depth control. Since the filter is relatively slow, it will 

be an important factor in the sliding mode control design to follow. 

2. Submergence Control Simulation 

Now that three filters have been designed, each may be evaluated for estimating the 

depth and depth rate using a dynamic simulation of the Phoenix vehicle under submergence 

control. A sliding mode controller will be designed which will require the depth and depth 

rate for feedback. The control inputs are the two vertical thrusters, which, in the 

simulation, act together as a single input causing the vehicle to be confined to one direction 

of travel. Motion occurs along the body-fixed z-axis, which is also assumed to remain 

parallel to the global Z-axis and the gravity vector. With these restrictions, and no vertical 

current component such that w(t) = z(t), the continuous time dynamic model for depth 

motion becomes 

Mzz(t) + bzz(t)\z(t)\ + FB = 2azv(t)\v(t)\ (5.12) 

where 
Mz = m + maz. 

and maz is the heave added mass, and az is a coefficient relating the square of the vertical 

thruster motor voltage, v(t), to the force developed. The thruster effectiveness is doubled 

since both thrusters are operated simultaneously and receive equal control voltages. FB is 

any net force acting on the vehicle caused by a deviation from neutral buoyancy, and bz is 

the coefficient of square law drag in the vertical direction. 

The position and rate errors for submergence control are defined as 

z(t) = zcom(t) - z(t) 

(5.13) 

2(0  = ZcomW ~ z(0- 
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where the subscript "com" refers to the commanded depth or depth rate. The sliding surface 

for a single input/output control design is a scalar equation given by 

a{t) = z(t) + kz{t) (5.14) 

where X is scalar quantity analogous to the matrix S2 described in Chapter Ü. The control 

voltage can be expressed as 

v(o = VinöMrco) (5.15) 

where 

7(0 = kA..  ..    4*^ + £ + ^(f) + ^ 
2a ZcomW   + M. M. 

Since only the depth signal is available for measurement and we wish to reduce the 

computation time for the state estimate, the constant gain filter will be used to supply depth 

rate feedback for the sliding mode controller. With this, the control equation uses the 

estimates of depth and depth rate as follows: 

7(0 = 
M. 

( 

2a, 
4™(0 + 

bmat) \ 

M, 
+ -J- + Xi(f) + 7}sat{d(t) I (j>) 

M, 
(5.16) 

where 

and 

(7(f) = z(t) + Az(0 

2(0 = zcom{t) - z{t) 

(5.17) 

(5.18) 

Figure 5.8 shows the response to a step command of 4.0 feet in depth using the 

three filters previously designed. Depth rate and commanded control voltage levels are 

shown in Figures 5.9 and 5.10 respectively. The control gains A, 77, and the boundary 

layer thickness 0 were varied until the most satisfactory response was observed as a 
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balance between tracking error and control activity. The appropriate gains for each filter 
were 

Filter 1  A = 0.1 , 77 = 0.1 , 0 =0.7 

Filter 2 X = 0.2 , 77 = 0.1 , <j> = 0.2 

Filter 3  X = 0.5 , 77 = 0.1 , (f> =0.1 

The slower the filter, the lower the control gains were to compensate for filter lags, 

and is reflected by the speed of response of the respective systems. The boundary layer 

thickness also had to be broadened with decreasing filter bandwidth. If high gains and a 

small boundary layer thickness is used, the system will become unstable for slower filters 

because of the time lags. 

The system was most sensitive to boundary layer thickness. For small errors, o{t) 

is within the boundary layer, and with a small value of (p, the switching function slope is 

sharp, providing high gain control for small errors. The switching curve is shown in 
Figure 5.11 contrasting the wide boundary layer, 0 = 1.0, with a narrow boundary layer, 

<p = 0.1. These three cases have shown that the selection of the control gains is highly 

dependent on the bandwidth of the Kaiman filter used. Therefore, the controller must be 

tuned for each specific filter design. 

3. Variable Boundary Layer Formulations 

To avoid the task of selecting unique gains for each sliding mode controller, a 

method to vary the values of the gains can be used. Sensitivity to the boundary layer 

thickness can be overcome by formulating <p as a function of o{t). It is desired that the 

gain is low near a(t) = 0 and high for larger values of a{t). One way to accomplished this 

is using a linear function, such as 

Ha) = ^ - I*- ~ »***'>, (5.19) 
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or a non-linear function 

r min ®max 

where <rmar is the maximum value o{t) will assume, or in the case of a step input, the 

value of a{t) at maximum error, a{0). The curves for the linear and non-linear functions 

are shown in Figure 5.12. ^ was chosen as 1.0 with (j>mitt =0.1. Returning to Figure 

5.11 the two switching curves for the two functions for 0(CT) are shown. From this, it is 

easily seen that the gain will be equivalent to using a constant value of 0(a) = 1.0 near 

o(t) = 0 but the gain increases faster with increasing o(t) than if a value of 0(CT) = 1.0 is 

used throughout. The increase in gain is even more accentuated using the non-linear 
function. This method can also be extended to adapt the values of A and t] to reduce the 

amount of controller tuning required. 

To evaluate the effectiveness of the variable boundary layer, the sliding mode 
controller Eqn. (5.15) was modified to use Eqn. (5.19) for the calculation of <j>. For 

purposes of comparison, the response to a step input of 1.0 foot using a constant, 0 =0.1, 

and variable boundary layer is shown in Figure 5.13. It can be seen that when using a 

constant value of 0, a limit cycle instability appears once the set point is reached. 

However, the response is stabilized if a variable boundary layer is used, decreasing the 
gain near the set point were the tracking errors are small. 

4. Evaluation of Control Law Robustness Through Parameter 
Sensitivity  (Step  Response) 

With the computer simulation studies completed, the controller designed above was 

implemented on the Phoenix in the test tank. Each control gain or vehicle parameter was 

individually varied from the nominal values listed in Table 5.1, which were obtained from 

the simulations to determine their effectiveness on vehicle performance. The vertical 

thrusters were the only actuators used and the forward speed was zero. Each test used a 
step input of depth error with zcom = zcnm = 0. The test cases were separated into four 

distinct series which are shown in Tables 5.2 through 5.5. 
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Table 5.1 Nominal Controller Gains/Vehicle Parameters 

M7 a, 1 A 0 £ 
lb - sec2 

ft 

lb 

V2 
ft 

sec2 

rad 

sec 
JL 
sec />2 

27.0 0.004 0.10 0.2 0.2 28.8 

Table 5^2 Controller Gains/Vehicle Parameters for Vertical Damping, bz, Test 

«z »7 A <i> 
A. 

Zcon,  (ft 

1 27.0 0.004 0.10 0.2 0.2 10.0 3.0 

2 27.0 0.004 0.10 0.2 0.2 28.8 3.0 

3 27.0 0.004 0.10 0.2 0.2 45.0 3.0 

4 27.0 0.004 0.10 0.2 0.2 90.0 3.0 

Table 5.3 Controller Gains/Vehicle Parameters for Thruster Effectiveness, az, Test 

M, «* *7 A <t> k zcom (ft) 

1 27.0 0.002 0.10 0.2 0.2 28.8 2.0 

2 27.0 0.004 0.10 0.2 0.2 28.8 2.0 

3 27.0 0.008 0.10 0.2 0.2 28.8 2.0 

Table 5.4 Controller Gains/Vehicle Parameters for Switching Gain, 77, Test 

a* n A 0 £ Z-com  (ft) 

1 27.0 0.004 0.05 0.2 0.2 28.8 2.0 

2 27.0 0.004 0.20 0.2 0.2 28.8 2.0 

3 27.0 0.002 0.20 0.2 0.2 28.8 2.0 
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Table 5.5 Controller Gains/Vehicle Parameters for Sliding Surface Position 
Error Coefficient, A, Test 

K a, n A 0 
A 

K Zcom  (ft) 

1 27.0 0.004 0.10 0.1 0.2 28.8 2.0 
2 27.0 0.004 0.10 0.2 0.2 28.8 2.0 
3 27.0 0.004 0.10 0.4 0.2 8.8 2.0 

The of portion of the Strategic Level Prolog used for the submergence control 
experiments is given below. 

execute_phase(2)    :- exec_next_setpt_data(X), exec_submerge(X), 

exec_start_depth_error_filter(X), exec_start_timer(X), 
repeat, phase_completed(2). 

phase_completed(2):- exec_sleep(l,X), ask_depth_reached(X), X==l, 

asserta(complete(2)). 

phase_completed(2):- ask_time_out(X), X==l, exec_surface(X), 

printsc('PHASE 2 ABORTED DUE TO TIME OUT!*), 

repeat, ask_surface_reached(X), X==l, 

asserta(abort(2)). 

Note that vehicle initialization is performed during phase (1), and the submergence test 

occurs during phase (2). Running this section of code instructs the Tactical Level to send 

the depth set point, control mode, and phase timeout information to the Execution Level 

that is specified in the mission file (exec_next_setpt_data). Once this has been done, the 

vehicle is commanded to submerge (exec_submerge) and have the depth error filter started 

in the Execution Level (exec_start_depth_error_filter). At this point, the timeout counter is 

started in the Tactical Level and the query predicate, "ask_depth_reached" is repeatedly 
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executed until the commanded depth has been reached. If the set point is not attained before 

the time out, an abort is ordered and the vehicle surfaces. 
The results for varying the vertical damping coefficient, bz, are shown in Figures 

5.14 through 5.16. It is evident from the depth response that the damping coefficient used 

in the controller directly affects the speed of response. Using relatively small values results 

in lower command voltages on the thrusters since the controller is assuming a very lightly 

damped system exists. Increasing the damping to relatively large values produces the 

opposite effect and the control voltages are very high. In fact, the results from the fourth 

test, bz = 90.0 lb - sec21 ft1, caused the thrusters to saturate, and the vehicle struck the 

bottom of the tank and bounced upwards before being controlled to the set point. 

The next series involved varying another vehicle parameter, the thruster 

effectiveness coefficient, az, and these results are shown in Figures 5.17 and 5.18. 

Overdriving of the thruster can be clearly seen in the upper trace of Figure 5.18. Using a 

larger value for az causes a much softer control action since a very "strong" thruster is 

assumed, as shown in the lower trace of the figure, and was so small that the vehicle had 

difficulty reaching the set point. 
The switching gain, 7],was the next value to be investigated and these results 

appear in Figures 5.19 and 5.20, showing the effects of varying the control gain as 

opposed to vehicle parameters. A limit cycle is seen for the largest value of t] since the 

slightest error is strongly amplified. The third test shows an even larger amplitude limit 

cycle since the thruster effectiveness, az, was lowered from the nominal resulting in an 

even higher gain. Using a small gain provided a very soft control preventing the set point to 

be reached. 
The final series analyzed the effectiveness of the sliding surface position error 

coefficient, A, shown in Figures 5.21 and 5.22. These results followed those of the 

switching gain series since both the values of A and 77 affect the overall gain of the control 

system. However, the contribution of A, which is part of the sliding surface definition, to 

the gain is attenuated by the saturation, <j). This is reflected by smaller amplitudes of 

control action oscillation compared to those generated by 77. 

The oscillatory control voltage behavior seen in the previous results is not solely 

caused by high gain. One reason is the fact that in the steady state, there is virtually no 

damping force present due to the low velocity. Another cause is the sensitivity of the square 

root function in Eqn. (5.15). For values of x(t) near the origin, which reflect small errors, 

the control voltage is more strongly amplified than in other regions. The coarse 
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discretization resolution from the depth sensor channel is causing the velocity estimate from 

the filter to be very noisy and the controller is excited by this. The resolution of the depth 

measurement was only 0.0182 feet which was mainly due to the large operating range of 

the depth cell (0 - 37.0 ft). The A/D converter had a digital resolution of 0-2048 for an 

input voltage range of 0 -10 Vdc which is proportional to the depth range. This relatively 

coarse resolution can be improved by either using a higher resolution A/D unit or selecting 

a depth cell with a smaller operating range and comparable output voltage. 

5. Submergence Integral Control 

So far the analysis has assumed that the value of the net buoyancy force FB in Eqn. 

(5.12) is zero. In practice, this is usually not the case since achieving complete neutral 

buoyancy of an actual vehicle is very difficult given the variability of water temperatures, 

salinity, and the hull compression effects of increased depth. Also it is usually advisable to 

ballast an underwater vehicle slightly positive (light) since if the power or control systems 

fail, recovery will be possible. The consequence of a positively or negatively ballasted 

vehicle is that a steady-state offset from the commanded depth will result. Figure 5.23 

shows the simulated depth response for a light, heavy and a neutrally buoyant vehicle for a 

commanded depth of 2.0 feet. The disturbance can be satisfactorily handled using integral 

control. 
The sliding surface equation, (5.14) can be modified to include an integral term 

given by 

a(t) = i{t) + X,z{t) + ?i2jz(t)dt, (5.21) 

where the integral term should not exceed a pre-defined maximum value, 1^, such that 

\jz(t)dt\  < L max 

Limiting the growth is referred to as anti-reset windup, and will be discussed later in this 

section relating to position control performance. 
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The new control for thruster volts becomes 

v(0 = ,J[y(t)\sgn(Y(t)), (5.22) 

where 

7(0 = -^{zamW +  *kt) +  Kht) + 77tanh(£(f)/0)) + ^4-(4z(0|z(0| + FB) 

The addition of the term X2z(t) will remove any steady state depth errors from the 

response, but for best results, integral control should be applied only during certain phases 

of the maneuver. 

Figure 5.24 shows the simulated depth response using integral control from time 

t = 0 until t = 120 seconds. Since the position error is large at the start of the maneuver, 

the integral grows very rapidly and contributes a large control force to submerge the 

vehicle. The control action persists beyond the set point, resulting in an overshoot that is 

especially large for the heavy case, and regardless of the anti-reset windup, an overshoot 

must occur to subtract from the growth of the integral. One solution to this problem is to 

activate integral control only after a steady state offset is detected, as shown in Figure 5.25 

(i.e. error closure has not been achieved within a preset time). Using this approach greatly 

reduces any overshoot for the heavy case and for a light vehicle, no overshoot will occur. It 
should be noted that if the anti-reset windup limit, 1^, is not large enough to overcome 

the net buoyancy force, FB, a steady state error will exist proportional to the difference in 

these values. 

The in water results of the NPS Phoenix are shown in Figures 5.26 and 5.27 for a 

commanded depth of 2.0 feet. The depth response for a lightly, partially lightly, and 

heavily ballasted vehicle is shown, along with the commanded control volts to the vertical 

thrusters. Varying the buoyancy was achieved by adding lead weights on top of the hull to 

increase the weight for each respective experiment. If the commanded depth was not 

achieved within 40 seconds, integral control was activated and the errors were significantly 

reduced as shown. The control voltages reflect the buoyancy condition that exists since the 

steady state voltage for the light cases is positively biased providing an overall downward 

force, while the opposite is true for the heavy case, which commands an upward force. If 
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the vehicle is neutrally buoyant, the set point depth will be achieved within the specified 

time and no integral action will be required and is not activated. 

6. Command Generators for Precision Depth Maneuvering 

So far all depth changes have been performed using step inputs of position error for 

the control input, leaving the velocity and acceleration commands zero, leading to a large 

initial thrust requirement and actuator saturation. Using softer control gains can alleviate 

this, but usually causes very sluggish response with poor steady-state tracking precision 

and disturbance rejection. To control the transient response more precisely while 

maintaining adequate bandwidth, two forms of command generators have been formulated 

which consist of the desired position, velocity, and acceleration of the vehicle depth as a 

function of time. Form 1 requires that the maximum velocity and acceleration be specified, 

along with the desired depth change and the time to complete the maneuver is dependent on 

these values. Form 2 allows specification of both the final depth and time to complete the 

maneuver but due to the added constraint, the maximum velocity can not be chosen 

arbitrarily. For the submerge motion, the two command generators are taken from 

L-^com'  Zcam>  ^comi   ~   ^V^O'  Zp  Zmax, Z^^j   1Q)      (rOVXU  l) 

or 

iZcom> Zcom> Zcoml   ~   G(Z0,  Zf,  Z,^,   TQ,   Ty)    (Form 2) 

where a fifth order, zero jerk profile has been chosen so that the maximum acceleration and 
the bandwidth capacity of the vehicle is not overly exceeded and z0, T0 is the initial depth 

and starting time while zf,   Tf is the final desired depth and time at the end of the 

maneuver. Using this technique significantly reduces the occurrence of actuator saturation, 

since the errors are continuously small throughout the depth change phase. A detailed 

description and the equations used are presented in Appendix B. 

Experimental results for both the command generator formulations will now be 

presented. The conditions were identical to those used for the step response tests except 

that the initial depth before the maneuver begins was not at the surface but approximately 
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0.75 feet under. By doing this, any surface effects are minimized that may interfere with 

the submerging ability of the vehicle. 

Figures 5.28 through 5.30 show the results using command generator Form 1. The 

nominal control parameters in Table 5.1 were used with a commanded depth 2.0 feet and 
z      and z     were 0.02 ft I sec and 0.006 ft I sec2 respectively. It can be seen from the 

position response, that the commanded depth is not being tracked very well until the very 

end of the maneuver. The control voltage trace shows a great deal of oscillation caused not 

only by the velocity noise, but when using a command generator, the position and velocity 

errors are small throughout the maneuver, giving rise to the high gain effect of the square 

root function discussed earlier. Since using a higher gain controller to improve tracking 

performance caused even more control action, it was decided to relax the command 

generator specification which is presented next. 

Results from Form 2 of the command generator is shown in Figures 5.31 through 

5.33. where a final depth of 3.0 feet was specified and the elapsed time to complete the 
maneuver was 60.0 seconds. It was desired to use the smallest possible zmax given the 

distance and time constraints, which from Appendix B is 

■z-      = 8   k -^1 (5.23) 
(Tf - T0)

2 

and computes gentler profiles for the vehicle to follow and results in a much improved 

response. It should be noted that a slight overshoot occurs near the end of the maneuver 

due to a heavy vehicle that day but it is quickly removed by the integral control action 

which was activated once the error was detected. The velocity command was also tracked 

very accurately. 

7. Conclusions From Submergence Control Studies 

The results presented have shown that the depth of the Phoenix can be precisely 

controlled using Sliding Mode control of the vertical thrusters. Although discretization 

noise from the depth cell produced unfavorable control action, the overall performance is 

exceptional and this problem can be easily rectified using a better sensor. Applying integral 

control has shown to be very effective in compensating for any deviation of the vehicle 

from neutral buoyancy, especially if activated at the proper time. Using command 
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generators provided extremely precise, time based maneuvering, even in the presence of 

buoyancy disturbances. 

C.      HEADING CONTROL 

Described in this section is the development of the sliding mode heading control 

equations for the Phoenix vehicle. The two lateral thrusters are the only actuators used and 

the nominal forward speed is zero. All experimental data was collected in the NPS AUV 

test tank using the submergence controller developed previously for depth control. The 

sensors used for control feedback are the directional and yaw rate gyroscopes. The first 

section will present the control algorithm development, followed by experimental results of 

step response for heading command. The final section shows the results for command 

generator inputs to the controller specifying a time based desired angular position, velocity, 

and acceleration for a maneuver. 

1. Vehicle Model for Heading Control 

The vehicle dynamics for rotation about the body-fixed z-axis (yaw) using both the 

bow and stern lateral thrusters can be described by the following differential equation for 

the continuous time, continuous state evolution: 

/>(t) + bvy/(t)\y/(t)\  = 2ayv(t)\v(t)\ + 8f¥{t) (5.24) 

where 

z   ~    zz zza 

and /^ is the added inertia about the z-axis, a is a coefficient relating the square of the 

lateral thruster motor voltage, v(t), to the moment developed, bv is the coefficient of 

rotational square law drag, and Sf (t) is the force error. It has an upper bound, y, such 

that Lj(öf¥) < y, where L is the L, norm of 8f¥{t). Since this development assumes 

motion restricted to a horizontal plane with depth control assumed by a separate controller, 
r(t) = \jf(t) and r(t) = y/(t). 
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(5.25) 

The angular position and rate tracking errors are defined as 

¥(t) =  Vcwn(t) ~ ¥(0 

¥(t) = Wcom(t) - W(t), 

with the sliding surface given by 

<jv(t) = y(t) + Xvy(t). (5.26) 

The sliding mode control law for rotational control is given by 

v(0 = VÄÖMnO) (5.27) 
where 

7(0 =    l 
2av 

Wcam + ^') + -f¥(t)\W(0\ + rivtanh(ev(t)/$¥) 1— 
\ lz lz       ) 

Since both the bow and stern lateral thrusters are equidistant from the vehicle center and are 

of equal size and power, the magnitude of the solution to (7.2) is commanded to each 

thruster except for a difference in sign such that 

vw,(0 =  + v(r) 

and 
vrff(f) =   - v(f) 

where vw,(r) and vsll{i) are the voltage commands to the bow and stern lateral thrusters 

respectively. 
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2. Heading Control Experimental Results (Step Response) 

Results obtained from in water testing of the heading control will now be presented. 

Four majors series are shown with the first being the response to varying and observing the 
effects of the switching gain r]v, the second varying the switch saturation level 0 , the 

third involves adding an output filter and dead zone to the control voltage command for 

further smoothing. The final series presents the results of using time based command 

generators for precision control to a prescribed heading. All step response tests used 

T com T com " 

The Prolog code used to perform this is given by 

execute_phase(3)     :- exec_next_setpt_data(X), exec_submerge(X), exec_rotate(X), 

exec_start_timer(X), repeat, phase_completed(4). 

phase_completed(3):- exec_sleep(l,X), ask_depth_reached(X), X==l, 

ask_heading_reached(X), X==l, 

asserta(complete(3)). 

phase_completed(3):- ask_time_out(X), X==l, exec_surface(X), 

printsc('PHASE 3 ABORTED DUE TO TIME OUT!'), 

repeat, ask_surface_reached(X), X==l, 

asserta(abort(3)). 

Each test is started by submerging the vehicle to a depth of 2.5 ft using the 

submergence control method outlined previously to minimize surface effects during rotation 

(performed during phase 2). Phase 3 begins with the Tactical Level sending the depth and 

heading set points, etc. to the Execution Level. If the commanded heading is not reached 

before the timeout, an abort is declared and the vehicle surfaces. 
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A nominal set of control gains and vehicle parameters were obtained through 

computer simulation and parameter identification of the rotational motion which are given in 

Table 5.6 below (Torsiello, 1994). 

Table 5.6 Nominal Parameters and Gains for Heading Control 

Parameter/ 

Gain 
h K &v Ay, nv K 

Unit Ib-fl-sec? lb-fi-sec2 lb-fi 

V2 

rad 

sec 

rad 

sec 

rad 

sec 

Value 80.00 55.87 0.006 0.200 0.010 0.010 

The first series of tests were run to study the effects of different values of the 
switching gain r\r The parameters used in the controller are listed in Table 5.7 and the 

results shown in Figures 5.34 through 5.36 for a commanded heading of K/2 radians 

from an initial heading of 0.0. 

Table 5.7 Parameters for Switching Gain Series 

Case# h K av &v nv K 

1 80.00 55.87 0.006 0.200 0.010 0.010 

2 80.00 55.87 0.006 0.200 0.050 0.010 

3 80.00 55.87 0.006 0.200 0.100 0.010 

Figure 5.34 shows the angular position response for the three values of r\v listed 

above. It can be seen that increasing the gain naturally causes the speed of response to 
increase as well. The time to reach the set point for the smallest gain, r}¥= 0.01 rad I sec2 

is approximately 50.0 seconds and half that, only 25.0 seconds using the largest, T]v= 

0.10 rad I sec2. The fast response does come with a cost since the larger gain causes 

control action chatter once the steady state heading has been achieved, as seen in the lower 

trace of Figure 5.36, while the control action provided by the softer gain is relatively 

smooth. The limit cycle behavior is caused by the same reasons as explained for 

submergence control, namely the low damping and the sensitivity from the square root 

function in Eqn. (5.27). 
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Since the value of the saturation gain, <j>v, in the first series of experiments was 

small giving a relatively sharp switching action, it was decided to increase this value in 

order to influence the amount of chattering in the steady state while maintaining a 

respectable response time. The parameters used for this series are in Table 5.8 and the 

results shown in Figures 5.37 through 5.39. 

Table 5.8 Parameters for Saturation Series 

Saturation K «v A>¥ riv K 
1 80.00 55.87 0.006 1.000 0.090 0.100 
2 80.00 55.87 0.006 1.000 0.090 0.200 
3 80.00 55.87 0.006 1.000 0.090 0.400 

W/F 80.00 55.87 0.006 1.000 0.090 0.400 

It can be seen that the differences in saturation level have only a slight effect on the 
response time but does follow a trend of increasing switch sharpness (i.e. decreasing (/> ) 

produces a faster system. Observing the control voltage in Figure 5.39, both the frequency 
and amplitude of the control voltage is decreased by increasing (j>v. This is attributed to the 

fact that with a larger saturation gain, larger values of &¥(t) which reflect larger errors, 

will be attenuated by the sat function over a much larger range which decreases the control 

action in the steady state. 

Another approach was attempted to reduce the chattering by post filtering the 

control voltage commands. A first order digital filter of the form 

'm+u = e'T/TVm> + 0 " e-T/r)yk. (5.28) 

was used. The value of the sampling time, T, was the usual 0.1 seconds and the time 

constant, T ,was 0.45 seconds. With filtering, the resulting control voltage is shown in the 
lower trace labeled " 0^ = 0.40 W / F" which still exhibits a limit cycle but is of smaller 

amplitude, and the frequency is greatly reduced. The results show that increasing the 

saturation to 0.40 rad I sec and using a post filter provides an acceptable response time 

while significantly reducing the switch frequency and amplitude. 

To further reduce the actuator activity in the steady state, a dead zone on the 

command voltage was applied, that causes any voltage commands below a certain level to 
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be ignored and a value of zero sent to the thrusters. The following results show the 

comparison of a controller using only the post filter (Case 1) to one using the filter and a 

control dead zone of +4.0 volts (Case 2). Table 5.9 gives the parameters used, and the 

response is shown in Figures 5.40 through 5.42. 

Table 5.9 Parameters for Dead Zone Series 

h K &¥ A>¥ v¥ K 
W/O D.Z. 80.00 55.87 0.010 1.000 0.090 0.100 

With D.Z. 80.00 55.87 0.010 1.000 0.180 0.200 

Figure 5.41 shows a very rapid rise time for the controller using the dead zone 
since the switching gain, r\v is relatively high but the control action is very small in the 

steady state as shown in Figure 5.42. It can also be seen that the control only activates for 

values above 4.0 volts as designed. Only one side of the dead zone is active since the 

ethernet tether was placing a small disturbance moment on the vehicle in the - y/ direction. 

3. Heading Control Experimental Results (Command Generators) 

The command generators described in the previous chapter for submergence control 

can also be extended to include rotational motion. The two forms for heading control are 

Won» Wen*- WaJ = G(y/0, y/f, y^, ij/max, T0)  (Form 1) 

or 
Wcam*   Yon,'   ¥coj    =   ^( W   ^,   \jfmax,   TQ,   Tf) (FOITO 2) 

where yf0 and T0 is the initial heading and starting time while y/f and Tf is the final 

heading and time at the end of the maneuver. 

Form 1 of the command generator was used to control the vehicle from a heading of 
0 to K/2 radians as shown in Figures 5.43 through 5.45. The values for y/max, and ij/max 

were 0.033 rod I sec and 0.006 rad I sec2 and the nominal control gains and vehicle 

parameters were used. The vehicle tracks the commanded angular position perfectly but 

does not follow the desired rate very well during the constant angular velocity phase. This 
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is due to an uncompensated bias in the rate gyro but does not cause any performance 

degradation. 

The response for Form 2 of the command generator is presented in Figures 5.46 

through 7.49. This test controlled the vehicle from 0 to K radians in an elapsed time of 60 

seconds using a much gentler profile which has no region of constant angular velocity. 

Again the heading command is tracked very well even with the rate bias error. 

Both tests revealed the high thruster chatter that was seen from the submergence 

results and are due to the same reason. The errors are continually very small throughout the 

maneuver and the high gain effect of Eqn. (5.27) is again responsible. 

4. Conclusions From Heading Control 

The results of Sliding Mode heading control for the Phoenix using the lateral 

thrusters has been exceptional in both step response and command generator performance. 

The tendency of the lateral thrusters to chatter has not adversely affected the vehicle 

motions. Using post filtering and a dead band on the thruster input voltage lead to a 

significant reduction of this undesirable phenomena. The command generator performance 

was highly accurate, demonstrated by almost perfect tracking of the input profiles. 

D.       LONGITUDINAL CONTROL 

Described in this section is the development of the sliding mode, longitudinal 

position control algorithms for the NPS Phoenix vehicle. The control has been 

demonstrated using wall servoing, which involves maneuvering the vehicle (along the 

body-fixed x-axis) to a prescribed distance from one of the tank sides, using the ST1000 

profiling sonar for position feedback. By using the sonar to ping against one of the tank 

walls, a smoothed range and range rate may be determined by proper filtering. Maneuvers 

of this type have important applications in the areas of inspection of underwater structures 

or close-up examination and classification of mines. The ability to servo a vehicle next to 

targets of interest greatly enhances mission capabilities. 

Results from a simulation study using this control technique, including current 

disturbances and thruster lags can be found in (Marco, 1992), while the analysis presented 

here details the experimental evaluation of the controller. 
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The first section outlines the development of the control algorithm followed by a 

discussion of a Kaiman filter design for range rate estimation from the sonar, followed by 

experimental results for step response of wall standoff distance commands. Finally, some 

issues pertaining to sonar operation for this application are discussed. 

1. Vehicle Model for Longitudinal Control 

The vehicle dynamics for longitudinal (x-axis) motion using the stern screws can 

be simplified to the following continuous time differential equation. 

Mxm + bxm\x(t)\ = 2axvx(t)\vx(t)\ + 8fx(t) (5.29) 

where 

and 

M,   = m + m„ 

v,(0K(0| = (vfa(0|v,(0| + v„(/)|v„(f)|)/2 

m is the vehicle mass, and m^ is the added mass of the body in the longitudinal direction. 

u(t) is the body-fixed rate for the longitudinal direction. bx is the square-law damping 

coefficient, and v/v(f), vra(f) are the motor input voltages for the left/right stern screws 

respectively. The voltage to force coefficient is given by ax and 8fx{t) is the force error. It 

has an upper bound, 7, such that L,(8fx) < y where L is the L, norm of Sfx(t). Since 

motions are assumed to be restricted to the horizontal plane and along the longitudinal axis 

only, with no current, u(t) = x(t) and ü(t) = x(t). 

Since the vehicle motion dynamics are expected to be second order in position, the 

sliding surface for servo control is specified as 

ax{t) = x(t) + AxJc(0, (5.30) 
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(5.31) 

where the tracking errors are defined as 

*(0   = Xeon,«)  ~ x(t) 

kt) = xcom(t) - x(t). 

The sliding mode control law for servo control is given by 

v,,(0, v„(0 = -§J(t)\sgn{Y{t)) (5.32) 

where 

no - u CM    ( 

2a, 
Knm + K*(t) + -g-x(t)\x(t)\ + rixtanh(<jx(t)/<!>x) - ^M 

The test scenario is shown in Figure 5.49 where the range returned by the ST1000 sonar is 

denoted R(t), and since the direction towards the wall is positive x, motions in this 

direction will generate range values from the sonar which follow 

R(t + At) < R(t) 

which implies that the rate is 

R(t + At) < 0, 

while for the vehicle 

x(t + At) > 0. 

To deal with the sign difference between the range and vehicle rates, a change of variable 
may be introduced such that 

x(t) = R0- R(t) 

x(t) =  - R(t) 
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where Rg is the initial range to the wall prior to the start of the maneuver and is also the 

position where x is defined to be 0. The commanded x position can then be described in 

terms of the wall standoff range by 

Xcam    ~   RQ   ~   Rcom> (5.33) 

which is used in the position error calculations forming the sliding surface, Eqn. (5.30). 

2. Filter Design for Longitudinal Control 

The filter structure used for longitudinal control is identical to the one presented in 

the first part of this chapter for applied to vehicle submergence. In this case, the input 

signal is the range from the ST 1000 profiling sonar. The filter provides a smoothed range 

and estimate of the range rate which will be used for vehicle control. The filter model is 

again based on a three state kinematics model for range excited by acceleration noise, 

R,(t) = R2(t) 

4(0 = Rs(*) (5-34) 

kit) = q(t). 

The states Rj(t), R2(t), and R3(t) are estimates of the position, velocity, and acceleration 

of the range signal R(t), while the measurement equation, with R(t) being the range, is 

R(t) = R,(t) + v(t), (5.35) 

where q(t) is taken to be the system noise and v(t) is the measurement noise. The gains 

used were also the ones obtained for Filter 2 defined earlier, namely 

L = 

0.2544 

0.3727 

0.2731 

which provided good results for the environment of the test tank and nature of the signal. 
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Figure 5.50 shows the raw sonar data together with it's filtered estimate and the 

vehicle velocity estimate. Range drop outs and false readings from the water column are 

evident in the raw signal as shown. Anomalies of this magnitude cause serious problems if 

used in a control law and must be ignored. One method to detect range anomalies is to 

monitor the residuals, r, given by 

r = Rk~ HRk, (5.36) 

which, for this filter, is the difference between the measured range and the expected range, 

and is known as the "innovations process" (Friedland, 1986). The covariance of the 
residuals, of, is the model based propagated state error covariance, given by 

<  = 0Pk_,^T + rqk_,rT. (5.37) 

If a residual exceeds 3or, the corresponding range return is declared an anomaly and is 

rejected. Since the measurement is invalid, the Kaiman gain, Lk, is set to zero and the new 

state estimate is propagated without correction. The condition for rejection can also be cast 

as a ratio given by 

r2 

-\ > 9, (5.38) 
G 

which is commonly referred to as the "normalized innovation". 

Application of this technique provides satisfactory results, except for instances 

when multiple consecutive anomalies occur. In this case, filter estimates propagate without 

correction, and after some time, (depending on the estimated state), diverge to the point 

where filter lock is lost. Checks for filter divergence are incorporated into the vehicle 

operational software. The decision is keyed on the estimated range rate, where if 
Rk > Rmax divergence is suspected, and use of the filter for navigation is terminated. An 

Rmax of 3.0 ft/sec has been used, which is a maximum feasible velocity for the vehicle. 

Regaining lock is unfortunately not an easy task. Several options for filter re-initialization 

are available but depend on particular circumstances, and this an area for further work. 
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3. Longitudinal Control Experimental Results (Step Response) 

In this section, results obtained from in water testing of wall servoing control are 

presented. Each test began by submerging the vehicle to 2.5 ft using the depth control 

method outlined earlier to minimize surface effects during translation. The vehicle was also 

under heading control to maintain the longitudinal axis perpendicular to an end wall. To 

perform this maneuver, two phases are needed, one to identify the target, and another to 

servo the vehicle. The Prolog code used is: 

execute_phase(3)     :- exec_find_sonar_target(X), repeat, phase_completed(3). 

phase_completed(3):- exec_ask_sonar_target_found(X), X==l, 
exec_start_sonar_filter(X), asserta(complete(3)). 

phase_completed(3):- ask_sonar_ping_out(X), X==l, exec_surface(X), 
repeat, ask_surface_reached(X), X==l, 
asserta(abort(3)). 

execute_phase(4)    :- exec_next_setpt_data(X), exec_servo_X(X), 
exec_start_X_error_filter(X), exec_submerge(X), 
execjrotate(X), exec_start_timer(X), repeat, 
phase_completed(4). 

phase_completed(4):- exec_sleep(l,X),ask_X_reached(X), X==l, 
ask_depth_reached(X), X==l, ask_heading_reached(X), X==l, 
asserta(complete(4)). 

phase_completed(4):- ask_time_out(X), X==l, exec_surface(X), 
printsc('PHASE 4 ABORTED DUE TO TIME OUT!'), 
repeat, ask_surface_reached(X), X==l, 
asserta(abort(4)). 

Vehicle submergence is performed in phase 2, followed by activating the sonar to 

identify the distance to the wall. Note that there is no submerge or rotate command for 

phase 3, since the depth and heading commands for phase 2 are still in effect. Execution of 

the predicate "exec_find_sonar_target" starts the search by pinging against the end wall, 

and   if   3    consecutive,   consistent   ranges   are   obtained,   the   predicate 
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"exec_ask_sonar_target_found" evaluates TRUE. At this time, "exec_start_sonar_filter" is 

executed and the Kaiman filter algorithm, part the Execution Level, is initialized to the 

average of the three consecutive ranges, which completes phase 3. With the range to the 

wall determined, servoing control is activated in phase 4 where "ask_X_reached" succeeds 

if the vehicle reaches the set point within the allowed timeout. In phase 3, if the wall is not 

identified after 5 attempts, based on 3 consecutive pings, the predicate 

"ask_sonar_ping_out" is evaluated TRUE and the mission aborts. 

A nominal set of control gains and vehicle parameters were obtained through 

computer simulation and parameter identification of the wall servo motion, (Torsiello, 

1994), which are given in Table 5.10 below. 

Table 5.10 Nominal Parameters and Gains for Servoing Control 

Parameter/ 
Gain 

Mx k a. K Vx 4>, 
Unit 

lb - sec 

ft 

lb - sec 

ft2 

lb 

V2 

rad 
sec 

ft 
sec 

JL 
sec 

Value 14.86 1.33 0.025 0.2 0.1 0.2 

Two test runs using the above values are shown in Figures 5.51 through 5.53. A 
commanded standoff distance, xcom(t), of 3.0 feet was chosen, with an initial distance 

from the wall approximately 9.3 and 11.0 feet for Tests 1 and 2 respectively, with 
xcom = xcom - 0. Both results show an extremely well behaved position response 

exhibiting no overshoot, regardless of the initial starting point. Figure 5.52 reveals that the 

estimated velocity is slightly noisy but does not adversely affect the results. Shown in 

Figure 5.53 is the voltage commands to the stern screws, which exhibit some chattering 

due to the controller switching term, but is not at such a high frequency to cause significant 

actuator wear. 

4. Robustness Analysis of Longitudinal Motion Maneuvers 

A robustness analysis using the control design and experimental data from above 

will now be presented. Eqn. (2.33), cast in terms of the longitudinal control parameters can 

be written as 
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where 

y F fx 

Mr Mr 
■\{i - r<)\ + K^r, - ;)||*com + Ai) (5.39) 

1    ^ Mr la 

and fx ~ fx     = i7,, where fx =  -bxx\x\. 

If the experimental data is substituted into (5.41) with appropriate values for the 
parameter uncertainties, a time history of the minimum value of T]x required for stability 

can be produced. Figure 5.54 shows the effect different levels of uncertainty listed in Table 
5.11 have on the required magnitude of T]x, applied to the data from Test 1. 

Table 5.11    Uncertainty Levels for Longitudinal Control 
Robustness Analysis 

Uncertainty Level F 7 P 
1 0.0 1.2 1.2 
2 0.0 1.5 1.5 
3 0.0 2.0 2.0 

Recalling that x = - x for step inputs, the shape of the curves are proportional to the 

vehicle velocity, while the magnitude is scaled by the uncertainty level. During the steady- 
state phase of the maneuver, the requirement on r\x shrinks since the velocity is very small. 

Since the controller for the experiment used a value of 0.1 for t]x, and provided a stable 

response, it can be concluded that the parameter estimates used in Table 5.10, are close to 
the actual values. 

5. Sliding Mode Verses PD Control and Sonar Input Power 
Considerations 

The results presented so far have used a Sliding Mode controller which has 

provided extremely precise positioning response for the non-linear system involved. 
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However, previous work used a simple Proportional Derivative (PD) linear controller for 

the same task. While PD control is simple to implement and executes rapidly in real time, as 

compared to the model based sliding mode control, the performance is inferior as shown in 
Figure 5.55. A large overshoot results using the PD controller for the set point xcom = 3.0 

feet, while the SMC shows none, clearly demonstrating the superiority of the non-linear 

controller for this application. 

During the course of the wall servoing experimental work, it was discovered that 

the sonar power level must be chosen carefully when used in the test tank. The nominal 

power level was determined by placing the sonar head in the middle of the tank and 

adjusting it until the most favorable results were obtained. A level of 12% of full power 

was found to be appropriate for the tank environment, and turned out to be suitable for 

ranges as close as 4.0 feet from the wall, but not closer. By placing the head closer to the 

wall, over ensonification occurs and the range signals become extremely erratic as shown 

in Figure 5.56. With the head some distance from the wall, the signal is very clean and 

stable, but after settling to approximately 3.0 feet away, the signal begins to breakup, 

causing the filtered range to diverge. By lowering the power setting to 5% corrected the 

problem for "close to wall" servoing, and was sufficient for target detection as far away as 

12.0 feet. One method to automatically adapt the power setting is to use a formulation such 
as 

Power =f(R), (5.40) 

which automatically reduces the sonar power as the head nears an object. Although this 

approach is encouraging, it has not been incorporated into the sonar control software, but is 

an area for future work, where learning algorithms can be applied. 

6. Conclusions From Longitudinal Control 

The results of sliding mode wall servoing control have shown exceptional accuracy 

in longitudinal positioning of the vehicle. Using a Kaiman filter modified to reject range 

outliers, provided very accurate and stable signal conditioning from the ST 1000 sonar data. 

A comparison between sliding mode and proportional derivative control was presented 

which demonstrated the superiority of the non-linear approach. Future work in this area 

could include the use of two sonars to enable both longitudinal and lateral positioning of the 
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vehicle for more general control scenarios. Also, extensions to behaviors used in wave 

surge and current conditions using this approach could be done. 

E.       COORDINATED SUBMERGENCE/HEADING CONTROL USING 

COMMAND GENERATORS 

1. Command Tracking Performance 

In some robot motions, tracking to commands for multiple behaviors operating 

simultaneously becomes important. For instance, while maneuvering around targets, 

position and orientation of the vehicle may need to be coordinated. Coordination of control 

behaviors requires the use of time synchronized commands through command generators. 

To prove that these behaviors are possible in an underwater environment, experiments were 

conducted to simultaneously submerge and rotate the vehicle to a predetermined depth of 

3.0 feet and a heading of 180° respectively. It was specified that the final depth and 

heading both be reached at 60 seconds from the beginning of the maneuver, and was 

accomplished for both control modes using command generators. 

A section of the Prolog code used to control the mission appears below, and 

executes until the pre-defined depth and heading has been attained, which is determined by 

the error criteria presented in Chapter in. 

execute_phase(2) :- 
exec_submerge(X), X==l, 
exec_rotate(X), X==l, 
exec_start_timer(X), 
repeat, phase_completed(2). 

phase_completed(2):- ask_depth_reached(X), X==l, 
ask_heading_reached(X), X==l, 
asserta(complete(2)). 

phase_completed(2):- ask_time_out(X), X==l, 
exec_surface(X), repeat, 
ask_surface_reached(X), X==l, 
asserta(abort(2)). 

phase_completed(2):- ask_sys_problem(X), X==l, 
exec_surface(X), repeat, 
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ask_surf_reached(X), X==l, 
asserta(abort(2)). 

It should be noted that the Prolog code is identical to that used for simultaneous depth and 

heading control for step command inputs. The difference lies in the Tactical Level mission 

file, which specified the use of command generators for both depth and heading control. 

Refer to Chapter El for a full description of the Tactical Level mission input file. 

The following tables give the values used in the vehicle control laws developed 

earlier for submergence and heading control as applied to the coordinated maneuver 

experiments. 

Table 5.12. Parameters for 
Submergence Control 

Parameter Value Unit 

m 13.5 lb 
A. 

13.5 lb 

K 28.8 lb/ft-sec2 

A. 

a7 0.004 lb/V2 

K 0.400 rad/sec 
A2 0.040 rad/ sec2 

r\ 0.1 ft/sec2 

tf> 0.2 ft /sec 

Table 5.13. Parameters for Heading 
Control 

Parameter Value Unit 
A. 

40.0 lb-ft- sec2 

L 40.0 lb- ft- sec2 

K 55.87 lb-ft- sec2 

ccv 0.006 lb-ft/V2 

X 0.200 rad /sec 

ri 0.200 rad/sec2 

<t> 0.200 rad/sec 

Figures 5.57 and 5.58 show the normalized time responses for depth/depth rate and 

heading/heading rate respectively. Although the depth command is accurately tracked 

during the transient phase, an overshoot occurs near the final set point, caused buy the 

vehicle becoming "heavy" from hull compression. At this point, integral action from the 

controller quickly compensates for the error. Since no disturbance force was present in 

rotation, the heading response shows a very precise tracking performance with virtually no 

error. 

Referring to the depth rate response, a very noisy signal is evident, caused by 

discretization noise from the depth cell A/D converter. Although the signal is far from 
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clean, the overall tracking performance is not adversely affected. The heading rate 

measured from the onboard gyroscope shows a definite tracking error, and is attributed to a 

non-zero bias in the unit. Figure 5.59 shows that the depth and heading are simultaneously 

controlled to the command generator specification except for the small depth overshoot at 

the end of the maneuver. 

2. Conclusions From Coordinated Control 

It has been shown that is a relatively easy task to program coordinated vehicle 

maneuvers since the generality of the Strategic Level rules allow the method of control to be 

determined by the Tactical Level. Accurate, simultaneous tracking of the command 

generator trajectories proved that the servo level controllers are currently very well tuned 

for the vehicle maneuvers shown. 

F.       CONCLUSIONS 

The results presented have shown that the Phoenix can be precisely controlled in the 

test tank environment using thrusters. Development of sliding mode controllers for 

submergence, heading, and longitudinal control have proven to be robust and have shown 

to provide exceptional vehicle performance. The flexibility of the Strategic Level rules 

allowed many different control scenarios to be quickly tested and evaluated without major 

code modifications. Using command generators provided extremely precise time based 

maneuvering and proved very effective when activated concurrently for multiple control 

modes. 
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Figure 5.32 Depth Rate Response vs. Time Using Command Generator Design 2. 
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Figure 5.57 Normalized Depth and Depth Rate Response vs. Time of the 

Coordinated Maneuver. 
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Figure 5.58 Normalized Heading and Heading Rate Response vs. Time of the 

Coordinated Maneuver. 
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VI. LOCAL AREA NAVIGATION 

While there has always been a need to determine the global position of an 

underwater vehicle, in some missions involving search, mapping, and intervention with 

objects, navigation to local area landmarks is more appropriate and precise. In minefield 

reconnaissance operations, there is also a need to determine position relative to a target for 

the purpose of taking video pictures, viewing from different aspects, and even charge 

placement. If the object lies in an unstructured environment, the vehicle must use active 

sensors to perform these operations. Once maneuvering control around objects in the local 

area scene is understood to a satisfactory degree, intervention using manipulators and other 

tactile devices will be enabled. Such activities as changing out a battery pack for a bottom 

mounted sensor or finding and entering an underwater garage for re-powering will then 

become commonplace. 

This chapter concerns the analysis of local area maneuvering using sonar based 

feature detection from the local scene. As this process takes a significant time to complete, a 

mathematical model of the vehicle response is used to provide control inputs during periods 

when sonar updates are not available. In the class of vehicles designed for the intervention 

mission, (Marks, et. al., 1994) have studied the problem of servo positioning the OTTER 

vehicle to visual cues from stereoscopic cameras, although monocular video data was used 

to perform edge detection and servo control of the pan and tilt mounting coupled to the 

vehicle platform. Smith, et al. have proposed the use of an acoustic single- 

transmitter/multiple receiver design for local area navigation, although preliminary data 

from the sonars alone seem encouraging, it has yet to implemented in an actual vehicle. 

Section A. covers the formulation of the three degree-of-freedom equations of 

motion for the vehicle (longitudinal, lateral, and heading), which will be used as part of the 

a model based navigation control. The next section address the algorithms used to locate 

and track a navigation target with the ST 1000 sonar, and is followed by a description of the 

control methodology which incorporates model based control with position updates from 

the sonar. Simulation and experimental results of the control performance are given, and 

the chapter concludes with a discussion of an improved target tracking technique. 
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A.      MODEL BASED CONTROL FORMULATION 

Absent of an inertial position reference, and where sonar position data arrive 

asynchronously, and infrequent, a dynamic model of the vehicle is used for state 

information between updates. A three degree-of-freedom model (longitudinal, lateral, and 

heading) is used since the motion for this experiment is restricted to the horizontal plane 

with the depth maintained by a separate controller. The model is obtained by including 

drag, added mass, and steady state thrust, and for surge is 

Mxü(t) + bxu(t)\u(t)\ = 2axvx(t)\vx(t)\ (6.1) 

The sway directional equation of motion is 

Myv(t) + M0|v(0| = a,vw,(0|vw,(0| + «vv,;,(r)|v,,r(0| (6.2) 

and finally the equation for the yaw dynamics becomes 

h r(0(t) + bvr(t)\r(t)\   = a¥vhl,(t)\vhl,(t)\ - cc¥vslt(t)\vslt(t)\ (6.3) 

where 
Mx  = m + max,        My  = m + may,  Iz  = 1^  + la7Z 

and 

vx(0|vx(0| = (vb(0|v,,(0| + v„(0|vr,(0|)/2. (6.4) 

m is the vehicle mass, Ia, the mass moment of inertia about the body-fixed z-axis, and 

the subscript "a" refers to the added mass or inertia of the body. u(t), v(t), and r(t) are 

the body-fixed relative velocities for longitudinal (x-axis), lateral (v-axis), and heading 
(y/) directions. bx, by, by are the square-law damping coefficients, vls(t), vrs(t), and 

vbIl(t), vs/((r) are the thruster motor input voltages for the left/right stern screws, and the 

bow/stern lateral thrusters respectively. The voltage to force/moment coefficients are given 
by ax, ay, and av. 
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The above dynamic equations can be formulated using matrix notation as 

Mx(t) = f(x(t),b) + g(a)u(t) (6.5) 

and vehicle kinematics are defined by 

z(t) = h(y/)x(t) + uc(t). (6.6) 

The body-fixed relative velocities are 

x(t) = {u(t) v(t) r(t)}T, (6.7) 

and the global position and orientation is given by 

z(t) = {X(t) Y(t) Xjf{t)}T. (6.8) 

The vector describing the hydrodynamic drag that is a function of the relative velocity and 
square-law damping coefficients, b = { bx b   bv } is 

f(x(t),b) = {-M0|"(0|   -byv(t)\v(t)\   -bvr(t)\r(t)\}\ (6.9) 

the mass matrix is 

M = 
Mx 0 

0 M 

0 0 
(6.10) 
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and input gain matrix, which is solely a function of the thruster coefficients, 
a = {ax ay a¥},is 

g(a) = 

2ocx 0 0 

0 ay a, 
0 av -oc¥ 

(6.11) 

Finally, the control input vector is defined as 

u{t) = {vx(f)|vx(o| vw(o|vW((o| vJ/f(oK/r(o|}7 
(6.12) 

For the case of translation in X, Y and rotation y/, the transformation matrix from 

the body-fixed axes to the global reference is given by 

h(y/(t)) = 

cos( \j/(t))   -sin{ \jf(t))   0 

sin(y/(t))    cos(y/(t))    0 

0 0 1 

(6.13) 

and it's time derivative is 

h(y/(t),y/(t)) 

-y/(t)sin(y/(t))   -y/(t)cos(y/(t))   0 

yf(t)cos(yf(t))    -y/(t)sin(y/(t))   0 

0 0 0 

(6.14) 

Any current disturbances are represented by 

«c(0 = K« "c,(0 0}1 (6.15) 
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The sliding mode control law can now be formulated defining the tracking error 

vector in terms of global coordinates as 

(6.16) 

Now that the tracking error has been formulated, an equation defining the sliding 

surface in terms of this error can be written as 

_z(t)_ 
= 

~z    (t)~ *"Com V" / 

Zcorrr*- '_ 

- 
_z{t)_ 

o{z(t)) = [S,  S2] 
z(t) 
m 

(6.17) 

where 

o(x(tl z(t)) G *3X';    Sj, S2e9t 
3x3 

The elements of 5; and S2 can be selected to provide the desired performance of the closed 

loop system. For the case of planar control, and choosing S, as the identity .they are 

S, = 

1   0   0 K 0 0 

0   1   0 s2 = 0 K 0 

0   0   1 0 0 K 

If S, is identity, and uc(t) is assumed zero, the sliding mode control becomes 

u,(t) = gCr'(Mh-'zcom(t) -/(•)) 

ujt) = §(•)-'Mh-\4-k*)k*r'z + S2i(t) (6.18) 

„(f) =£(.)-'M/T»77(CT(.),0) 
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where 

0 = {t f tfv f and  G = "K ^ ^ }T' 

In Eqn. 6.18, the switching term r\{G{»),^>) is more clearly defined as a 3 by 1 column 

vector where each element contains the appropriate individual response mode switching 

function, so that 

H(ff(«),0) = 
r\xsat{ax I <px) 

r\ysat{oyIQy) 

T}vsat{ov I 0y) 

(6.19) 

and Uj(t),   u2(t), and u3(t) contain the acceleration, velocity and switching terms 

respectively. The inverse of the input gain matrix for this case is found directly as 

*(«)-' = 

l/2ax       0 0 

0      l/2ay    l/2av 

0      l/2ay   -l/2a¥ 

(6.20) 

Since the motion is restricted to the horizontal plane, 

Ä-'(lKO) = hTW)) = 

' cos(y/(t))    sin(y/(t))   0 

-sin(yr(t))   cos(y/(t))   0 

0 0 1 

(6.21) 
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The control vectors in terms of the individual parameters and gains are 

u,{t) = 

' (l/2ax)(Mxcosy/(t)Xcom(t) + MxsinW(t)Ycom(t) + bxu(t)\u(t)\) 

(7/2«V)(MV( - siny{t)Xcom{t) + cosW(t)Ycom(t)) + byv(t)\v(t)\) 

+ (l/2a¥)(lziircflm(t) + b¥r(t)\r(t)\) 

(l/2ay)(My( -siny,Wc„m(t) + cosy,(t)Ycom(t)) + byv(t)\v(t)\) 

- (l/2a¥)(lzii,com(t) + b¥r(t)\r(t)\) 

u2(t) = 

(Mx/2aJ  y/( - siny/(t)X(t) + cosy/(t)Y(tj) + (hxcosy/(t)X(t) + Xysiny/(t)Y(t) 

(l/2ay)M\ y/(-cos\i/(t)X(t) - siny/(t)Y(t)) - Xxsinys(t)X(t) + Xycos\f/(t)Y(t) 

+ (ll2a¥)lzX¥ijf{t) 

(7/2av)Mv[ yr(-cosy/(t)X(t) - sin\i/(t)Y(t)) - hxsiny/(t)X(t) + Xycosy/(t)Y(t) 

- (l/2a¥)ltX¥m 
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u3(t) = 

(l/2ax)Mx[T]xcosy/(t)sat((Jx/(f>x) + 7iysiny/(t)sat((Ty/<l)y) ) 

(l/2ay)My[ -Tixsiny/(t)sat(ax/<l>x) + riycosy/(t)sat(ay/<py)j 

+ {ll2a¥)ltr\^sat{o¥l^) 

(7/2av)Mv( - T]xsinyf(t)sat(ox/<t>x) + T]ycosy/(t)sat(ay/(l)y)) 

- (l/2a¥)lzT]vsat((J¥/(t>¥) 

The control voltages to each actuator is given by 

v,(0 = ^Yjt)\sgn{YM 

v«,(o = Vl/w(ok«(rw,(0) 

where 

v,„(o = Vlr,„(oMr,„(0) 

(6.22) 

(6.23) 

(6.24) 

y_(r) = M,    + w,    + M, ' x '(/./> -w> -V.;> 

Yu,(t)   =  U,       +  M,       +  If, 
' w'v y '(2J) 3w> h.h 

YAt) = u,    + uz    + u3 

Now that the dynamic model of the vehicle has been established, the next step 

required to perform local area navigation is the selection of a suitable target for reference. 

This topic will be covered in the next section. 
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B .  TARGET DETECTION WITH SONAR 

To perform local area navigation using sonar, it is necessary to select an easily 

discernible feature in the vehicle operating area and use it as a fixed reference. To enable 

repeatable and unambiguous detection of the reference feature, the target feature should be 

stationary and reasonably unique with respect to other structures in the sonar field of view. 

Also, to classify these features, each must be segmented into a separate object and analyzed 

to see if it posses the structural properties of the desired target for reference. 

For the results presented, the target used for the local navigation reference was a 

1.0 foot diameter, 2.5 foot long cylinder placed vertically in the water column of the NPS 

test tank. The Tritech ST 1000 profiling sonar head was used mounted vertically in the nose 

of the Phoenix vehicle. The head uses a stepper motor which can mechanically rotate the 

transducer through 360° with respect to it's mounting at a minimum angular resolution of 

0.9°. For each step, the sonar is pinged and a single range value is returned which enables 

a complete profile of the area surrounding the vehicle to be constructed. 

An actual scan of the cylindrical target and square tank walls is shown in Figure 

6.1. A sweep width of ±35° and angular resolution of 1.8° was used. Each dot or "pixel" 

corresponds to a discrete range value returned by the sonar for a given angular position of 

the transducer head. Several disjoint groups or segments of pixels are visible in the field of 

view: the two sections of the tank wall, and the cylinder which casts an acoustic shadow 

against the wall. Since sonar range drop outs and noise are common with sonars, the tank 

wall to the upper right of the cylinder is broken up into several segments, although in 

reality, it is a continuous feature. It is this nature of acoustic sensors that lead to the 

development of the following algorithms for cylinder detection in the NPS test tank. 

Since the cylinder has been chosen as the desired target for the local area reference, 

returns from the tank walls will be filtered out and ignored. Separating a cylinder from a 

wall can be accomplished by segmenting each contiguous, disjoint group of range pixels 

and analyzing them for the desired characteristics of a cylinder. The basic method to isolate 

these segments is outlined in the flow diagram in Figure 6.2. The filter algorithm is 

initialized by pinging several times at a fixed bearing to obtain an average range value, r. 

The head is then commanded to scan in a clockwise direction and each range return is first 

tested for feasibility. If the range is zero or if it exceeds the maximum operating range, 
rmax, it is ignored and that range, r(, is set to the current average range, r, and the scan 
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proceeds. If the range is feasible, a test is performed to see if it lies within an error band of 

± Ar of the average and if so, the value of F is recalculated using the new range. The 

range and the associated bearing angle is then stored in a vector of size n, (the number of 

pixels defining the segment). If the range falls outside of the error band, a flag is set to 

examine how closely subsequent returns compare to the new range. A secondary average, 
rnew, is initialized to this value and a new segment is declared if the next nmin adjacent 

ranges are consistent with this average at which time the current average is set to rnew. The 

old segment is now terminated at / - nmin and the range, bearing and pixel count values are 

processed to extract any shape information they may provide. If the subsequent ranges, 
less than nmin pixels are inconsistent with rnew, and fall near the previous average, a new 

segment is not assumed and the scan continues using r. These "false alarms" occur quite 

frequently due to the nature of the sonar returns which contain drop outs and false ranges. 
The value of nmin can be varied depending on the environment of operation. For the test 

tank which provides relatively clean signals, the value of nmin is typically 3, but in more 

noisy conditions, a larger value should be used to provide higher filtering. 

Once a separate segment has been identified, the vector containing it's ranges and 

bearing angles is analyzed. The flow diagram for this algorithm is shown in Figure 6.3. To 

determine if the object defined by the segment is a cylinder, it must posses the following 

characteristics: 

1. Consist of a sufficient number of pixels, n, that does not exceed a 
maximum, nmax. If the number of pixels is large, in this case greater than 10 it 

can be safely assumed the segment is a wall due the relative size of the cylinder. 

2. Be in front of the tank walls. This is an obvious observation since the 

cylinder is assumed to be in the tank but must be included in the algorithm to 

avoid confusion by perceived cylindrical shaped areas on the wall due to noise. 

3. Have a central range closer than it's edges. Since a cylinder appears the same 

from any direction in a horizontal plane, the center of the segment will always 

be closer the sonar than the beginning and ending edges. 

The preceding algorithms have been used with much success in the NPS test tank 

and should operate well in an open water environment especially since the tank walls will 
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be absent and the reference target the most visible object in the area. This procedure can be 

modified to search for other geometric shapes since the idea of segmentation of each feature 

is retained but does not attempt to supplant more sophisticated and robust pattern 

recognition algorithms available. Additionally, this method was adopted since it can be 

executed in real time and is simply used as a means to perform the tasks described in the 

following sections. 

C.      RELATIVE POSITION ESTIMATION 

Once the reference target has been identified, it becomes the origin of the navigation 

coordinate frame where the X-axis is aligned with heading 0 degrees and the F-axis along 

a heading of 90° as shown in Figure 6.4. The two dimensional position vector to the origin 

of the vehicle body-fixed reference with respect to the navigation frame at detection time T 

is 

RJT) = \Y(T)\ =  ~(rJT) + RJT)) (6-25) 

where 

■[;} rs(T) = h(y/(T))\ '  , (6.26) 

and xs, ys is the position of the sonar head in vehicle coordinates. 

R'"m = U„,(D + r„,)sta(^(r) + r,(r» f (6'27) 

where Rn.,(T) is the sonar range to the target, y/s(T) is the heading angle of the sonar 

beam, and for the case of a cylindrical target, rcyl is it's radius. After the target and the 

location of the vehicle is found, the delay time between re-acquisitions is reduced by 

commanding the sonar to sweep across the target at a prescribed minimum sweep angle 
y/sw about a heading to the center of the target. 
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D.       POSITION UPDATE 

Because of the physical speed limits to mechanical scanning, there is a delay time of 

up to 10 seconds between successive detections of the target, the navigational scheme 

proposed employs the dynamic model between position updates. Eqn. (6.5) is integrated to 

obtain estimates of the vehicle position denoted X(t), and Y(t) during this time. The scan 

direction command angle ysd{t) between position updates is computed using 

{-(X(t) + xscos(y/(t)) + yssin(y/(t)) )) 

and a maneuver using this approach is shown in Figure 6.5. In circumstances where the 

scan width is too narrow and there exists a large discrepancy between the model and the 

actual vehicle, the scan direction calculated from the estimates of position can be in error. In 

these cases, and if the target has not been reaquired within a specified time, the head is then 

commanded to return to continuous sweep re-acquisition mode. One approach to reduce 
this possibility would be to increase the scan width, ysw to say 120 degrees but this would 

increase the time between updates and has not been implemented. 

For vehicle control in a plane, the complete state is defined by 

X(t) = { u(t) v(t) r(t) X(t) Y(t) y/(t) f (6.29) 

and the block diagram representation of the control scheme is shown in Figure 6.6. When 

the cylinder has been identified, the model is asynchronously updated at time of target 

detection using a Kaiman filter of the form 

X(T) = (/ - K)X~(t) + KXV(T) 

(6.30) 
Y(T) = (I ~ K)f-(t) + KYV(T) 
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where 

K =     /m   2 (6.31) 

and a2
m is the variance of the system model estimate of position and a] is the variance of 

vehicle position using the sonar. X~(t), and Y~(t) is the current estimate of position from 

the model just before the correction from the sonar is obtained. This analysis assumes the 

position estimate from the sonar is extremely accurate and the model very inaccurate. 

Therefore, the variance for position from sonar is set to 0 and infinity for the model. This 

causes the current estimate from the model to be disregard at the time of sonar update and 

reduces Eqn. (6.30) to 

X(T) = XJT) 

(6.32) 

Y(T) = YJT) 

which states complete confidence in the sonar. At this time the dynamic model state is reset 

to the values obtained from Eqn. (6.32). 
The word "Kaiman" is somewhat loosely used here as the model error variance, a2

m 

is not predicted and propagated along with the positional estimates. However, the fusion 

gain, K, is computed on the basis of a minimum fusion error variance for Gaussian errors 

assuming that the error statistics are known a priori. 

The onboard gyroscopes provide the heading angle and yaw rate values at 10 Hz, 

which are synchronous and highly accurate and no estimation of these is required. The 

observation vector is defined by 

y(t) = CX(t) (6.33) 

where the observation matrix is 
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c = 

0 0 0   0 0 0' 

0 0 0   0 0 0 

0 0 10 0 0 

0 0 0   0 0 0 

0 0 0   0 0 0 

0 0 0   0 0 1 

With only these two measurements made, Eqn. (6.33) reduces to 

y(t) = (6.34) 

which is used each time step in the vehicle controller and dynamic model along with the set 

point vector 

r(t) = 

KJt) 
YcJt) 

[Ye,JO} 

(6.35) 

E. SONAR ENVIRONMENT SIMULATION 

Before in water testing was performed, simulation of the effectiveness of the local 

area navigation algorithms were studied by simulation. Since the purpose of this work is to 

interact with the underwater environment using the sonar, the existing dynamic model of 

the vehicle alone would not be sufficient to test and evaluate these algorithms. The dynamic 

model is simulated by control inputs to the actuators only and has no knowledge of an 

external environment such as submerged obstacles, the bottom, or even other vehicles in 

the immediate area. This prompted the creation of a simple but effective simulator which 

modeled the physical environment in the computer using a collection of objects made up of 

three-dimensional rectangular polygons. Coupling the geometric representation of the sonar 

head motions and the dynamic model of the vehicle, enabled the navigation algorithms to be 

quickly evaluated and modified before in water testing was performed, and was found to be 

an essential development tool. 
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The underwater environment was built from 3-D rectangular polygons which means 

there exists for each vertex an ordered triple (x, y, z) in a global coordinate system. The 

polygons which define the NPS test tank with cylindrical target is shown in Figure 6.7 and 

are labeled 0 through 18. The sides of the cylinder not shown are unlabeled for clarity. This 

gives a very good representation of the operating environment for the actual tests to be 

done. Once the physical shape of the environment was defined, detection of the objects is 

performed using a polygon intersection technique described in detail in Appendix H. The 

line that intersects the polygon represents the sonar beam, and the origin of the beam is 

P(0) and the current direction the beam is pointed is described by unit vector e. Solution 

of Eqn. (H.7), which is the point of intersection of the sonar beam is the range to that 

particular plane. This operation is repeated for each plane describing the environment to 

determine if the beam intersects that polygon. If it does, the range is calculated and 

registered for that sonar beam heading. The sonar is assumed to be attached to the vehicle 

with axis of rotation parallel to the body-fixed z-axis which will undergo the same motions 

the vehicle experiences. Therefore, the unit vector, e, describing the beam direction in 

body-fixed coordinates is 

e = < 

cos(\j/s) 

sin(Ws) 
0 

(6.36) 

where if/,, is the heading angle of the sonar head which can be stepped in increments of 

0.9, 1.8, or 3.6 degrees. Figure 6.8 shows the vector relationships between the vehicle and 
polygonal environment. The point of intersection, Pc, in global coordinates is given by 

Pe = R0 + h(r, + r) (6.37) 

where h is the local to global transformation matrix. The vector rs is the position of the 

sonar head, and r is the sonar range vector both expressed in body-fixed coordinates The 

vector r may also be expressed as er where r is the scalar magnitude of the range which 

can be calculated from 

r = \hT(Pc - R0) - r\. (6.38) 
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The range along with the sonar heading angle y/s, will be the sonar information available to 

the vehicle controller. 

Since the controller relies on an uncertain dynamic model using the best estimates of 

the vehicle parameters, some mismatch will be present with the actual system. Therefore, 

the simulation developed two models, one using what is considered the "true" parameter 

values, and the other, estimates of these values, employed by the vehicle controller between 

sonar updates. The simulator more closely represents the situation for in-water tests since 

only estimates of the actual vehicle parameters are available and robustness issues are then 

elucidated. The sonar head position, and consequently the range values returned, are based 

on movements from the "true" model. The parameters which were allowed to differ are the 
masses, Mx, My, Iz, the damping, bx , by, bv, and the thruster gains, ax, ay, av. 

A Silicon Graphics workstation was used for the simulation. During execution, the 

polygonal environment and vehicle movements were animated and displayed to provide a 

visual verification of the control technique. The simulation control modules were designed 

to have exactly the same structure and functionality as would execute in the vehicle 

Execution Level. This enabled no code changes to be required between the simulator and 

the vehicle, thus significantly reducing the software debugging process for the in-water 

tests to follow. 

F.       SIMULATION RESULTS 

The simulation comprised of five commanded poses with respect to the target as 

listed in Table 6.1 and shown graphically in Figure 6.9. 

Table 6.1 Commanded Mission Poses 

Pose xam (ft) Ycom (ft) Warn (rad) 

1 -7.0 -3.0 0.0 

2 -7.0 0.0 0.0 

3 -7.0 3.0 0.0 

4 -7.0 0.0 0.5236 

5 -9.0 -3.0 0.0 
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The following tables give the parameter values used in the vehicle model and the 

sliding mode controller gains. 

Table 6.2 Parameters for Vehicle Model        Table 6.3 Sliding Mode Controller Gains 

Parameter Value Unit 

m 435.0 lb 

max 43.5 lb 
may 348.0 lb 

In 53.60 
2 

lb-ft-sec 

zza 53.60 
2 

lb-ft-sec 

K 1.33 lb-sec2/ft2 

b
y 17.0 lb-sec2/ft2 

\ 55.87 
2 

lb-ft-sec 

ax 0.025 lb/V2 

ay 0.004 lb/V2 

a¥ 0.006 lb-ft/V2 

Parameter Value Unit 

K 0.20 rad/sec 

h 0.20 rad/sec 

Ä-y 0.20 rad/sec 

t\x 0.5 m/sec2 

T\y 0.3 m/sec2 

Tfy 0.20 rad/sec2 

♦x 0.2 ft/sec 

<*y 0.3 ft/sec 

<t>v 0.20 rad/sec 

Note: asll = ahlt = allt, where /„ is the distance from the mass center of the vehicle to 

the center of the lateral thruster axes which is the same for both thrusters. 

The controller used step inputs in position while the commanded rates were set to 

zero. The control phase transitions were based on the position and rate errors in the X, Y, 

and y directions. Using these three directions, the error surface was formulated as 

o<J) = 
ax(T) 
os{T) 
ov(T) 

= we\e(T)\ (6.39) 

where 

e(T) = 
[Xam(T) - XV(T) 
Ycom(T) - YV(T) 
¥cnm(T) - yr(T) 

(6.40) 
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This formulation differs from the definition given in Chapter IE for signal transition since it 

does not include the velocity error. This was done because the transition was based on 

position errors from the sonar ranges, not from the model estimates since the model will 

generally predict a very smooth trajectory to the set point prior to sonar update, regardless 

of the actual vehicle position. This led to the monitoring of the transition only at time of 

update, T, and the velocities near the terminal phase of the maneuver were assumed to be 
small. The parameters for the error equation used were oox = o0Y = 0.5 feet, a0v = 0.1 

radians, and we = 1.0. 

The simulation results assume no parameter mismatch between the model for 

control and the true system and uses a control loop step time of 0.2 seconds (5 Hz). This 

value, instead of the usual 10 Hz rate was used based on preliminary timing tests using the 

vehicle CPU. Addition of the dynamic model and sonar control overheads required the 

control step size to be doubled in order to complete all the calculations. The X and Y 

position response with respect to the target is shown in Figure 6.10. The set points 

commanded in Table 6.1 are achieved quite easily and the control model is predicting very 

closely the actual position of the vehicle given by the sonar (asterisks). It should be noted 

that the slight discrepancy of position between the model and sonar is due to a time lag 

between target identification and model update. Recalling the identification methods of 

section 6.4, a new segment must be declared before the prior one is analyzed. This causes a 

delay of approximately 2.0 seconds before the coordinates of the cylinder are calculated and 

passed to the model for update, at which time the state has evolved 2.0 seconds beyond the 

time of observation. Fortunately, the delay is too small to cause instability for such a slow 

moving vehicle. The range and bearing angle of the sonar is shown in Figure 6.11. It 

clearly shows the dynamic tracking performance of the head throughout the maneuver. 

G.      EXPERIMENTAL RESULTS 

The in-water experiment used the same vehicle and controller parameters used in the 

simulation along with the same transition procedure. The vehicle was commanded to 

submerge to a depth of 1.2 feet using vertical thrusters as detailed in Chapter V. Once this 

depth was reached, the ST 1000 sonar was activated and scanned clockwise until the target 

(cylinder) was identified. At this time, the first pose (1) was issued and the vehicle started 

the controlled maneuver. 
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Figure 6.12 shows the position response results where the upper trace is Y(t) and 

the lower X(t). The position calculated from sonar at update, XV(T) and YV(T) are shown 

with circles and asterisks respectively. Examining the response for X(t) it is evident that 

the model for the longitudinal direction is in error since the predicted position at the time of 

correction is about double that calculated with the sonar. This mismatch has been attributed 

to errors in the development of forward thrust on the vehicle in transient conditions 

(Healey, et. al., 1995). The absence of shrouds around the stern screws appears to lead to 

an unmodeled transient force lag is present that is common with open propellers. Since this 

lag was uncompensated, and the control was dictated by the model predictions between 

position updates, large voltage commands to the screws were of too short a duration to 

build up sufficient force on the vehicle as shown in Figure 6.14. The performance was 

further degraded by the estimated position and rate feedback from the model. As these 

values were assumed to be nearing the set point pose, the controller actually reversed the 

propellers (negative voltage command) in an attempt to slow the vehicle. This effect can 

also be clearly seen in Figure 6.14 between the time 44.6 seconds and 55.0 seconds, the 

time of the position update from the sonar. The prediction of the lateral movement, Y(t), is 

much more precise since the cross-body thrusters are shrouded due to their tunnel design, 

and the model parameters are well established. 

1. Thruster Lag Analysis 

In an effort to confirm the effect and quantify the inherent propeller force lag, 

attention was returned to the simulator used before. The equation of motion for the 

longitudinal direction was modified to include a first order force lag, and in discrete form is 

FXlU+1) = JW"r/T + Fx{\ - e-TI*) (6.41) 

where T is the control loop time step, T is the time constant, Fx is the longitudinal force 

commanded by the controller, and Fx is the resulting lagged force applied to the "true" 

model. The model used by the controller did not have this lagging effect included in it's 

formulation since this was not the case during the in-water experiment. Various values of 

the time constant, T, were used in the simulation to match the results obtained from the 

actual experiment. The value which provided the best match was 14.0 seconds. The 

comparison between the actual and simulated responses for the first pose maneuver is 
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shown in Figure 6.15. Very close matching is evident for this choice of time constant. As 

time proceeds, the match begins to diverge which is caused by two reasons. The first is due 

to the fact that the cylinder is only approximated with flat polygons in the simulation which 

causes the identification algorithm to behave differently for a given number of scans. The 

second and most significant is the lack of noise and outliers seen in the actual test and not 

modeled in the simulation. This causes the simulation to reaquire the target very rapidly 

which causes the update time for the simulation to slowly but consistently out pace the 

results from the in-water experiment. With this better understanding of the vehicle model, 

the lag can be compensated to improve the performance and will be the subject of future 

work. 

H.      HIGH SPEED TRACKING 

Although the results from the previous section are acceptable, they were still in need 

of improvement, especially in the area of position update rate. The target was found on 

average every 10 seconds and caused a rather long time to complete the 5 pose maneuver. 

A new high speed algorithm was therefore studied using the standard target locating 

technique to initially acquire the cylinder but instead of activating a wide sweep of the 

sonar, the sweep direction was directed to the calculated center of the cylinder. To correct 

for the relative motion, an algorithm to maintain lock was devised and is shown pictorially 

in Figure 6.16. The use of a sweep width of 3.6 and step size of 1.8, consists of only a 

left, center, and right heading which enables the direction the target has apparently moved 
relative to the sonar to be determined. As seen in the figure, the scan direction y/sd is 

changed depending on which beam loses lock, either the left or the right. If lock is lost 
from the left beam, \f/sJ is incremented by 3.6 degrees and decremented by the same 

amount, if the right beam fails to hit the target. This method assumes relatively slow vehicle 

speed to prevent exceeding the bandwidth of the sonar. This must be seriously considered 

if the motion of the vehicle becomes too fast, the sonar will not be able to slew the head fast 

enough to maintain lock, especially near the target due to the high angular rate of change 

between the target and vehicle. 

Since the control will rely on the sonar range signal, the velocity of the vehicle must 

be determined by using the standard form of the kinematic Kaiman filter with thresholding 

used throughout this work. The formulation will also be useful for rejecting the large range 

values sensed when the sonar beam drops off the target and for any outliers caused by 
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multi-path or noise. The position of the vehicle is determined by using the transformation 

Eqn. (6.27), but in this case, it is used each time step for update, not at the asynchronous 
time T. Another modification is the deletion of the cylinder radius, r ,, in the calculation 

of the range to the cylinder, /?„„ (Eqn. (6.27)). The new form of Eqns. (6.25) and (6.27) 

become 

RJt) = 
\XJt) 
[YJt) 

=  -(rjt) + RJt)) (6.42) 

where the sonar range to the target is 

*uo = 
f/?cv,(f)cos(v(r) + y/Jt))} 

Rn,(t)sm(y/(t) + y/Jt)) 
(6.43) 

With these modifications and the fact that the update is now assumed to be 

synchronous, the block diagram for the control changes from the representation in Figure 
6.6 describing asynchronous updates, to appear as in Figure 6.17. The values of XJt) and 

YJt) are individually filtered and if either residual exceeds a value of 1.0 feet, the 

corresponding range is assumed to be an outlier or caused by loss of lock. In this case the 

residual is zeroed and the estimates for position and velocity are obtained from the 

kinematic model alone, as was done for wall servoing described earlier. The filtering 

generates estimates for the position and rate vectors given by 

RJt) (6.44) 

and 

K(t) = 
XJt) 

id) 
(6.45) 

respectively. The range was transformed to XJt), YJt) before filtering instead of filtering 

the range then transforming, since previous work indicated this ordering provides a much 

smoother result, (Zinni, 1995, Scrivener, 1996). 
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Previously it was assumed that the range information that arrived asynchronously 

from the cylinder identification algorithm was extremely accurate. This is not a bad 

assumption since the algorithm is quite robust and a single value of range and sonar 

heading is obtained per update. However, attempting to use the ranges obtained 

synchronously from a beam that strikes a cylindrical object at discrete angles can cause 

relatively large range changes from heading to heading. This is especially acute near the 

edges, and the filter predicts very large range rates from these. Reduction of the Kaiman 

gain to remove this undesirable effect can introduce lags which can lead to instability of the 

entire control system. A more appropriate method is to continuously fuse the position and 

velocity values from the kinematic filter with the estimates obtained from the model. 

Therefore, the variances from the model and sonar should be non-zero to provide additional 

conditioning of the position and velocity. These assumptions form the basis for a new set 

of Kaiman filter equations supplanting Eqn. (6.30) given by 

Xf(t) = (1 - K)X(t) + KXv(t) 
(6.46) 

Yf(t) = (1 - K)Y(t) + KYv{t) 

where the velocity is also calculated using 

Xf{t) = (1 - K)X(t) + KXv(t) 
(6.47) 

Yf(t) = (1 - K)Y(t) + Kfv(t) 

where the subscript"/" indicates a fused value and the gain K is obtained from Eqn. 

(6.31). 

If target lock is lost for more than three consecutive pings, the tracking algorithm 

has lost lock for a longer period than can be remedied using a sweep width of 3.6 degrees 

and reaquisition of the target must be undertaken. During this time, the variances of the 

sonar range is set to 1.0 and 0.0 for the model respectively to force reliance solely on the 

model estimates for control. At this time the kinematic Kaiman filter for the sonar range is 

deactivated to prevent divergence. Currently, the action taken to reaquire the target involves 

expanding the sweep width to ever increasing multiples of 3.6 degrees. During this time, 

the model is used to predict the location of the target using Eqn. (6.28) from the estimates 

of position. If lock is not obtained within a specified time, the mission is terminated. If lock 
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is re-established, the kinematic Kaiman filter is reactivated and initialized to the new values 

of position. 

Figure 6.18 shows the simulated position response in the Y direction using the new 

method with the commanded poses and vehicle/controller parameters of section 6.9. Since 

it is extremely important to regulate the vehicle speed to keep the motions within the 

bandwidth of the sonar movement, command generators were used for all three control 

directions, X, Y, and y/. Comparing with Figure 6.10, the mission time is not 

significantly reduced since the maneuvers were dictated by command generators which had 

a 20 second elapsed time specification for each segment. This had to be done otherwise 

lock on the target would have been lost if a faster response was chosen. Analysis of Figure 

6.19 shows that the sonar head responds to the loss of track by correcting the scan 
direction, ysd in accordance to the rules defined above. 

The method described above has been used to obtain some preliminary data in the 

test tank. The results were very promising as long as lock was maintained on the cylinder, 

but once lock was lost, the algorithm showed poor performance in re-acquiring lock. This 

was mostly due to shortcomings in the tracking software and the performance of the 

ST 1000 sonar was degraded due to a suspected electronic temperature fault in the head. 

Further software enhancements and hardware repairs will be needed to overcome these 

problems. 

I.        CONCLUSIONS 

The results of these experiments have shown that it is possible to navigate an 

underwater vehicle in a local area using an acoustic sensor for position information. The 

accuracy of the model used between updates is moderately satisfactory and can allow for 

time varying currents. However, some additional model adjustments could be made to 

compensate for the force lag in the longitudinal direction during transient thrust conditions. 

This undesirable effect could also be alleviated physically by the addition of shrouds 

around the stern screws which should bring the performance up to that of the lateral 

thrusters. While these results were taken in a tank environment, another improvement 

would be to fuse the model with an INS system in between updates from the sonar and 

then fuse that estimate with the sonar data to obtain a smoother averaging at update time. 

This would allow for compensation of wave induced disturbances while retaining the 

positioning precision found. Since the sonars are mechanically scanned, and a delay of up 
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to 10 seconds between position update is common, use of an electronically scanned or 
multi-beam sonars may be preferable although our experience to date has been that cross- 
talk between beams can be a serious problem. 

To increase the response time, a continuous target tracking algorithm was 
simulated. This provided extremely favorable results but will need further modifications to 
successfully operate in the actual vehicle. 
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J.       CHAPTER VI FIGURES 
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Figure 6.1 ST 1000 Sonar Image of a Cylinder and the NPS Test Tank. 
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Figure 6.2 Object Segmenting Algorithm Flow Diagram. 
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Figure 6.3 Object Segment Shape Algorithm Flow Diagram. 
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Figure 6.4 Position Vector Definitions for Local Area Navigation. 
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Figure 6.5 Sonar Scan Patterns for Maneuvers with Respect to a Cylinder. 
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Figure 6.6 Sonar with Model Control Block Diagram. 
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Figure 6.7 NPS Test Tank with Cylindrical Target Polygonal Representation. 
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Figure 6.8 Position Vector Definitions for Simulation Environment. 
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Figure 6.9 The Five Commanded Poses. 
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Figure 6.10 Position Response vs. Time (Simulation). 
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Figure 6.11 Sonar Range Returns and Heading Angle vs. Time (Simulation). 
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Figure 6.13 Sonar Range Returns and Heading Angle vs. Time (Experimental). 
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Figure 6.14 Stern Screw Control Voltage and Position Response vs. Time. 
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Figure 6.17 Sonar with Model Control Block Diagram. 
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Figure 6.19 Sonar Range Returns and Heading Angle vs. Time (Simulation). 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

The main purpose of this work has been to develop, demonstrate, and validate an 
open architecture, three level control system for the real time control of an autonomous 
underwater vehicle, (AUV). As applied to underwater vehicles, the three levels have been 

named the Strategic, Tactical, and Execution levels. At the top is the Strategic Level It is an 
asynchronous, discrete event system managing the progress of the mission phases, and 
implemented in the rule based language, Prolog. Below this is the Tactical Level, written in 

the language C, which computes data necessary to coordinating the control modes required 

for each mission phase and is also asynchronous. Finally, the C language Execution Level 
performs the synchronous motion control of the vehicle. Since sequencing mission phases 
is inherently an asynchronous process, and operates with longer time scales than the 
synchronous servo controllers, there is a convenient separation to run them using different 
processors. The natural division of the synchronous and asynchronous tasks maps well 
into the separation of symbolic and numeric operations and is well suited to multiple 
computers. With this flexibility, each system may be chosen based on their particular 
attributes with regard to computer languages, operating systems, timing constraints, and 

processor speeds. 
Combining the theories of discrete and continuous time control techniques, the 

Hybrid control system allows multiple task robot behaviors to be accomplished. Particular 
behaviors demonstrated included submerging, heading, and longitudinal control, along 
with local area positioning of the vehicle using acoustic sensors. Each control scenario 
described above was subject to simulation studies followed by experimental verification 
using the NPS Phoenix vehicle. 

A.       SUMMARY OF CONCLUSIONS 

1. Chapter II Conclusions 

Results from Chapter II have shown that the formulation for a MIMO Sliding Mode 
controller performs very well in the slow speed maneuvers supporting robotic behaviors. 
The control method includes the use of a weighted minimum norm for the solution of the 
inverse dynamics. Flexibility in adjustment of control effort between multiple redundant 
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actuators is thereby available and supports automated control reconfiguration for enhanced 

reliability. The simulations have also shown that adequate control authority is needed when 

performing path tracking maneuvers. So far the weights for the inverse solution of the 

input gain matrix have been either all unity or some unity and some zero. Further work is 

needed to formulate the weights for the control surfaces and thrusters to be a function of 

vehicle forward speed. Using this, it should be possible to avoid control saturation during 

any given maneuver. 

A robustness analysis was also presented which included modeling inaccuracies in 

the mass, dynamics, and input gain parameters. The analysis provided a design procedure 

to ensure stability despite the uncertainties. The results of this work have emphasized the 

need for control designers to clearly understand the performance limits of the vehicle to be 

controlled. 

Although, the control design methodology presented appears robust and well 

behaved in simulation, other real factors not included are lags in thruster response. If 

relatively long lags are present, these effects should be included in the general analysis. 

2. Chapter III Conclusions 

The conclusion of the work in Chapter III has indicated that complex behavior can 

be readily coordinated through Strategic Level rules, that are easily modified. Two kinds of 

predicates have been introduced. The first provides commands for particular vehicle action, 

while the second requests data for the evaluation of mission state transitions. 

Communication through Tactical Level software to the Execution Level controllers is a 

simple but convenient way of commanding stable responses of the vehicle. The design of 

well behaved control laws and functions at the Execution Level is essential and is 

accomplished through careful attention to the sliding mode control law specifications. 

Reactivity, failure recovery, and even human interfacing within the controller can take place 

at any level. 

3. Chapter V Conclusions 

The results of Chapter V have shown that the Phoenix can be precisely controlled in 

the test tank environment using thrusters. Development of sliding mode controllers for 

submergence, heading, and longitudinal control have been proven to be robust and have 
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shown to provide conveniently tuned, exceptional vehicle performance. The flexibility of 

the Strategic Level rules has allowed many different control scenarios to be quickly tested 

and evaluated without major code modifications. Using command generators provided 

extremely precise time based maneuvering and proved very effective when activated 

concurrently for multiple interacting control modes. 

a. Submergence  Control Studies 

The results presented have shown that the depth of the Phoenix can be 

precisely controlled using Sliding Mode control of the vertical thrusters. Although 

discretization noise from the depth cell produced more control action than desired, the 

overall positioning performance is exceptional, and this problem could be rectified using a 

finer resolution A/D converter. Applying integral control has shown to be very effective in 

compensating for any deviation of the vehicle buoyancy from neutral, especially if activated 

at the proper time. Using command generators provided extremely precise, time based 

maneuvering, even in the presence of buoyancy disturbances. 

b. Heading Control 

The results of Sliding Mode heading control for the Phoenix using the 

lateral thrusters has been exceptional in both step response and command generator 

performance. The tendency of the lateral thrusters to chatter has not adversely affected the 

vehicle motions. Nevertheless, using post filtering and a dead band on the thruster input 

voltage lead to a significant reduction of this undesirable phenomena. The command 

generator performance was highly accurate, demonstrated by almost perfect tracking of the 

input profiles. 

c. Longitudinal Motion  Control 

The results of sliding mode wall servoing control have shown highly 

satisfactory accuracy in longitudinal positioning of the vehicle. Using a Kaiman filter 

modified to reject range outliers provided very accurate and stable signal conditioning from 

the ST 1000 sonar data. A comparison between sliding mode and proportional derivative 

control has been presented which demonstrates the superiority of the non-linear approach. 
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Future work in this area could include the use of two sonars to enable both longitudinal and 

lateral positioning of the vehicle for more general control scenarios. 

d. Coordinated  Control 

It has been shown that is a relatively easy task to program coordinated 

vehicle maneuvers since the generality of the Strategic Level rules allow the method of 

control to be determined by the Tactical Level. Accurate, simultaneous tracking of the 

command generator trajectories proved that the servo level controllers are currently very 

well tuned for the vehicle maneuvers shown. 

4. Chapter VI Conclusions 

The results of Chapter VI have shown that it is possible to navigate an underwater 

vehicle in a local area using an acoustic sensor for position information. The accuracy of 

the model used between updates is moderately satisfactory and can allow for time varying 

currents. However, some additional model adjustments could be made to compensate for 

the force lag in the longitudinal direction during transient thrust conditions. This 

undesirable effect could also be alleviated physically by the addition of shrouds around the 

stern screws which should bring the performance up to that of the lateral thrusters. While 

these results were taken in a tank environment, another improvement would be to fuse the 

model with an INS system in between sonar updates and then, at update time, to fuse that 

estimate with the sonar data. This would allow for better compensation of wave induced 

disturbances while retaining the positioning precision found. Since the sonars are 

mechanically scanned, and a delay of up to 10 seconds between position update is 

common, use of an electronically scanned or multi-beam sonars may be preferable although 

our experience to date has been that cross-talk between beams can be a serious problem. 

To increase the response time, a continuous target tracking algorithm was 

simulated. This provided extremely favorable results in simulation but will need further 

modifications to successfully operate in the actual vehicle. 
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B .      SUGGESTIONS FOR FUTURE WORK 

Additional work is needed in several areas, and falls into three main categories: 

software improvements, upgrades of the vehicle hardware, and more sophisticated mission 

capabilities. One pressing need is to develop a graphical user interface (GUI) to provide an 

easier means of programming mission control. Such a system should include features to 

prevent attempts to design nonsensical missions or activation of inappropriate behaviors. 

The system should auto-generate executable code. 

An expanded set of vehicle primitives needs to be developed to enhance vehicle 

capabilities, especially if new sensors or actuators are installed such as side-scan and 

Doppler sonar. Improved fault detection software should also be included as part of a 

Tactical Level engineering module for on-line diagnostic state of health monitoring. 

Replacement of the Tactical Level error filters with softer techniques for decision making 

should also be explored. Using elastic rather than crisp constraints allows decisions to be 

made much faster with varying levels of confidence as opposed to the more constrained and 

invariant filtering approach. Applying the above measures, will also enable reconfigurable 

servo level control schemes through automatic redistribution of control effort if certain 

actuators fail. 

In the area of hardware improvements, implementation of radio Ethernet into the 

vehicle will allow tetherless remote communications while surfaced. To communicate with 

the vehicle while submerged, recent advances in underwater acoustic data transmission 

holds great promise and preliminary results using this technology have been positive. 

Using distributed processing in the Execution Level can allow a much better balance of 

computational requirements. For example, relegating the signal processing tasks to a 

dedicated processor associated with each sensor will significantly reduce the computational 

load on the controlling computer. For operations in the ocean environment, increased 

vehicle speed and endurance will be required, and can be achieved by using more powerful 

propulsion systems along with readily available, higher energy density batteries. 

One of several missions that need to be investigated is the automatic garaging and 

re-powering underwater. While current studies funded by ONR in the AOSN program are 

aimed at addressing this problem, the design of capture mechanisms, precision homing, 

and devices for power and data transfer are in need of further research. 
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It is important to evaluate the capabilities of the control architecture for performing 

simulated mine countermeasures missions while operating in the shallow water ocean 

environment. In particular, it will be important to evaluate the influence of waves on sonar 

image distortion and on the ability of the control to stabilize the induced vehicle motions. 

An additional area for future research in shallow water environments will be to establish 

within the Tactical Level a machine leaning capability for on-line sea state estimation. 

Learning from the wave induced motions, control techniques for anticipatory compensation 

may assist in improving the precision of positioning. 
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APPENDIX A. EQUATIONS OF MOTION FOR THE NPS 
PHOENIX 

The equations of motion and parameter values used to simulate the dynamic 

behavior of the NPS Phoenix is given in this appendix. 

A.       PHYSICAL PARAMETERS 

W,   Vehicle Weight =   435.0 lbs 

B,    Vehicle Buoyancy      =   435.0 lbs 

I,     Characteristic length   =   7.30 ft 

I„ = 2.7 lb-ft-sec2   Iyy = 42.0 lb-ft-sec2    Ia = 45.0 lb-ft-sec2 

1^ = 0.0 lb-ft-sec2   Iyz = 0.00 lb-ft-sec2    Ixz = 0.00 lb-ft-sec2 

xhvl, Bow Vertical Thruster Offset from CG. = 1.420 ft 

xM, Stern Vertical Thruster Offset from CG. = -1.420 ft 

xhlt, Bow Vertical Thruster Offset from CG. = 1.920 ft 

xsl!, Stern Vertical Thruster Offset from CG. = -1.920 ft 

yls, Left Screw Offset from C. G. = -0.330 ft 

y„, Right Screw Offset from C G. = 0.330 ft 

xG, x Coordinate of C G. From Body-Fixed Origin = 0.010/r 

yG, y Coordinate of C. G. From Body-Fixed Origin = 0.000 ft 

zG, z Coordinate of C G. From Body-Fixed Origin = 0.042 ft 

xB x   Coordinate of C B. From Body -Fixed Origin = 0.010 yj 

yB y Coordinate of C. B. From Body-Fixed Origin = 0.000 ft 

zB z Coordinate of C. B. From Body-Fixed Origin = 0.000 ft 
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B CONTROL INPUTS 

bit 

sit 

bvt 

Left Screw Force (lbs) 

Right Screw Force (lbs) 

Bow Lateral Thruster Force (lbs) 

Stern Lateral Thruster Force (lbs) 

Bow Vertical Thruster Force (lbs) 

Stern Vertical Thruster Force (lbs) 

Jbr 

JbP 

•V 

B ow Rudder Deflection (rad) 

Stern Rudder Deflection {rad) 

Bow Plane Deflection {rad) 

Stern Plane Deflection {rad) 

NON-DIMENSIONALIZED HYDRODYNAMIC COEFFICIENTS 

Surge Hydrodynamic Coefficients 

Xpr = 0.0 

= -0.00282 

x;=o.o   r5j,=o.o *: =-0.01743 

^; = o.o    X^' = 0.0   X'ww =0.0 

X'„ = -0.00753 X-wcj = 0.0 Kstr = °-°  xk = o.o   X^*-0.01018 

X'     =-0.01018 5sp°sp °l,p 
,   =-0.01018 Xr„ = -0.4024 

Swav Hvdrodvnamic Coefficients: 

y;   =o.o 
y;   = -0.00178 

n = -0.03430 
= 0.0 

Y'wp   =0.0            Y'Ssr  =0.01241 
C   = 0.0            Y'Sbr = 0.01241 

Y'pq   =0.0 Y: = 0.01187 y;   =-0.10700 

y; =o.o Y', = 0.0 y   = 0.0 vw 
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Heave Hydrodynamic Coefficients: 

z;   =-0.00253 z;  =-0.09340 Z' = -0.78440 

Z'pp   =0.0            Z'q    =-0.07013 Z' = 0.0 

z;r =0.0       z; =0.0 Z' = -0.02110 

z;r =0.0       z;r =0.0 Z' = -0.02110 

Roll Hvdrodvnamic Coefficients: 

K'P  =-0.00024 K;  =0.0 Kp = 0.0 

K; =0.0        #; =-0.00540 K'wr = 0.0 

K'„ =0.0        *;  =0.0 K = 0.0 

*; =0.0        K'vq =0.0 K'vw = 0.0 

Pitch Hvdrodvnamic Coefficients: 

M'q   =-0.00625   M^   =-0.00253 K = 0.05122 

M'pp = 0.0            M;   = -0.01530 K = 0.0 

M; = 0.0        M; = 0.0 K,p = -1.7664 

M'rr  =0.0            Mv'r  =0.0 KhP =  1.3260 

Yaw Hvdrodvnamic Coefficients: 

N'p    =0.0            N't    =-0.00178 KP = 0.0 Ksr = -1.7663 

N't    =-0.00047   N'p   =0.0 Kr = 0.0 Khr = 1.3259 

N'pq =0.0          #;   =-0.00390 K = -0.00769 

K =°-°       ^ =ao Kw = 0.0 
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M = 

Mass Matrix: 

m - Xü 

0 

0 

0 

mzG 

-myc 

m - X. 

0 

0 

mzG 

-myG 

0 

0 0 0                   mzc               -my0 

m-Yt 0 -(mzG + Yp)             0 mxG - Yf 

0 rn-Z- myc -(mxG + Z.)           0 

-{mzG + Kv) myG I„-K>              -/, -(/« + *,) 

0 -(mxc + M.) -Iv I . - M* 

mxG - N> 0 -{U + N,) -I, 

-A, 

M* = 

0 

m-Yt 

0 

0 

0 0 mzG               -myG 

0 0              mxc - Yf     -{mzG + Y.) 

m - Z„ -{mxG + Z.)           0                  myG 

-K + M,) /,, - M. 

o -/, 

(mzG + Kt)           myc -I„ 

mxG - N, 

-(/« + *,)     L-K>   J 

Input Gain Matrix: 

g = 

0 0 0 0 1 l 0 0 0 0 

MYSbr 0 uHYsxr 
0 0 0 0 1 0 1 

0 MZ5bP 
0 MZSsp 0 0 1 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 u\u\MShp 0 MMSsP 
0 0 ~Xbvl 0 ~Xsvt 0 

u\u\NShr 0 MN&r 0 -yb -yrs 0 Xb\t 0 Xsl 
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g = 

0 0 0 0 1 l 0 0 0 0 

u\u\YShr 0 u\u\YSsr 0 0 0 0 1 0 1 

0 u\u\ZShp 0 MZ
Ssp 0 0 1 0 1 0 

0 u\u\M5hp 0 u\u\MSsp 0 0 ~Xbvt 0 ~Xsvt 0 

M^Sbr 0 U\U\N6sr 0 -yb -yrs 
0 Xblt 0 xd 

D.      EQUATIONS OF MOTION 

Surge Motion Equation: 

m[u - vr + wq - xG(q2 + r2) + yG(pq - r) + zG(pr + q)] 

= ?-l4\x'p2 + X'q2 + X'r2 + X'pr] 

+ J13[X'ÜÜ + X'wqwq + X:pvp + X> + uq(X'^ + X'^SJ 

+ ^i\xy + x:y + M^VI + s2j + x>SspSfsp + x^s^ 
- (W - B)sin6 + Fb + F„ + Xresu\u\ 

Sway Motion Equation: 

m[v + ur - wp + xG(pq + r) - yG(p2 + r2) + zG(qr - p)] 

=  £I'[Y;J> + Y'fr + Y'mpq + K>] 

+ £I
3
[Y;V + Y'pup + Y'rur + Y'vqvq + Y'wpwp + Y'wrwr] 

+ ^l2[Y'vuv + Y'wvw + u\u\{Y'sJsr + Y'Shrdhr)} 

+ £ f [Q.ÄUXV + xrf + CJzb(x)(w + xq)2]   (\' + Xr) dx 

+ (W - B)cos6 sin 0 + Fhll + Fs sh 
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Heave Motion Equation: 

m[vv - uq + vp + xG(pr - q) + yG(qr + p) - ZG(p2 + q2)] 

= Mziq + z>2 + z;rPr + z;/] 
2 

+ |/5[z> + z;«g + z> + zf
vrvr] 

+ £/2[z>2 + Z>w + «M(Z^ + Z^)] 

+ (W - B)cos<j)cose + Fhvl + Fsv, 

Roll Motion Equation: 

'*/> + (7Z " 7,)^ + WPr -&- hz^2 ~ r^ - !^pq + ^ 

= £l5[K'pp+ Kr + K'pqpq + K'^qr] 

+ £-l4[Klv+ K'pup + K'rur + K'vqvq+ K'wpWp + K'wrwr] 

+ £/'[*>+ K'vwvw] 

+ m[yG(w - uq + vp) - zG(v + ur - wp)] 

+ (yG
w ~ yBB)cos<j)cosd - (zGW - zBB)cosdsin<t) 
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Pitch Motion Equation: 

hi + (h ~ IM ~ IMr + & + L^ ~ r) + L(P   - r) 
- m[xG(w - uq + vp) - zG(ü - vr + wq)] 

= ^l\M'.q + M'ppp
2 + M> + M'rrr

2] 

+ |/'[M> + M'quq + M'vpvp + M'vrvr] 

+ |/3[M>2 + M'wuw + u\u\{M'5sp5sp + M'Shpöhp)} 

~ f f[CA.Ä(x)(v + xr)2 + Cdzb{x)(w - xqf)   (W " *fdx 

- (xGW - xBB)cos(j)cosd - (zGW - zBB)sinO - xhvtFhvt - xsvtF^ 

Yaw Motion Equation: 

Izr + (/,. - Ix)pq - IJp2 - q2) - IJpr + q) + IJqr - p) 

+ m[xG(v + ur - wp) - yG(u - vr + wq)] 

=  ^1
5
[N;P + N'tr + N'pqpq + N'qrqr\ 

2 

2 
+ £-1

4
[N;V + N'pup + N'rur + N'vqvq+ N'wpwp + N'wrwr] 

+ £-l3[N'vuv + N'vwvw + u\u\(N'sJsr + N'ShrShr)] 
2 

~ 7    [Qv/z(x)(v + xr)2 + Cdzb(x)(w - xq)2}   \ J dx 

- (xGW - xBB)sin(j)cos6 - (yGW - yBB)sind 
+ Xblt^blt   +   Xsll^slt   ~   y^ls   ~  yrs^rs 
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Filler Angle Rates and Global Positions: 

X = uc + ucosy/cosd + v[cosysindsinty - siny/coscj)] 
+ wicosy/sindcosQ + siny/sintj)] 

Y = vc + usiny/cosd + v[sin\j/sindsin<f> + cosy/coscf)] 

+ w[sin\j/sindcos(t> - cosy/sirKJ)] 

Z = wc - usind + vcosQsinty + wcosdcosQ 

0 = p + qsinftand + rcos<j)tand 

6 = qcosty - rsin(j) 

.  _  (qsin(j) + rcos(f>) 
^ ~ cosd 

Cross-flow Velocity: 

Ucf(x) = ^[(v + xr)2 + (w - xqf] 
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APPENDIX B. COMMAND GENERATORS 

To control the positional motions of an underwater vehicle, position, velocity, and 

acceleration command generators may be required. In the one-dimensional case the 

commands are obtained from the specification of a desired final zero velocity and 

acceleration position given an initial zero velocity and acceleration position. The elapsed 
time to complete the maneuver, Tf, is determined from the desired distance to travel which 

is the difference between the initial position, s0, and the final, sf, along with s^ and 
s'max'tne maximum allowed vehicle velocity, and acceleration respectively. These values 

also determine the duration of Tcv, the time of constant velocity between acceleration and 

deceleration. To avoid any discontinuities in either of the command arrays, the acceleration 

curve must be at least third order, and gives a velocity curve of order 4 and a 5th order 

position curve as shown in Figure B.l. 

Given a third order acceleration command equation of the form 

s(t) = At2 + Bt3 (B.l) 

the coefficients A and B must be 

A    _        *Smax 

(T,   ) 
B = 2s 

(B.2) 

to force a zero slope at t = 0 and t = T^   . The duration of Tcv is calculated using 

r      _    r      _    T    max 

max J 

(B.3) 

If 7\„ < 0 and the value of sf      s0 is too small for the given specifications of smax and 

smax, this requires that imGX be reduced until the constant velocity interval is exactly 0 

given by 

V       = • tnax 

S0 Smax 
T„, = 0 (B.4) 
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The elapsed time during acceleration to smax is 

T     -  2£aaL> (B.5) 
ämax 

and the value of Tf is determined. 

If both the distance to travel and the total time to complete the maneuver is 
specified, the value of Tf must be of sufficient duration such that 

77 > J« 
sf - s0 

Jmax 

To determine the smallest possible maximum acceleration, snxax, for a given time, it may be 

calculated using 

v     = 8\Sf " 5°1 (B.6) Smax ~   °        T2 

which will produce a velocity curve with no region of constant velocity (i.e. Tcv = 0). 

The position, velocity, and acceleration profiles for the five time intervals shown in 

Figure B.l are given by 

For 0 < t < -^-: 

, A 4       B  < 

sit) = «| f t3 - -/ 1 (B-7) 

s(t) = a{At2 - Bt3) 
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T. 
For -*■*■ < t < T, 

2 m 

s(t) = s0 + a 
12' (

rw - 0' - %$*-. -f)5 + ^ " f 
2      A 
max 

(B.8) 

*« = «(A(rw - <)2 - BK ~ ')') 

For ^    < f < T,\ 

s(t) = s0 + a s    (t - T.   ) + $* 11 max y ^s^j .. 
max J 

s(t) = as„ (B.9) 

s(t) = 0 

Tt 
For T, < t < T, + —i 

(   A ,       „ v,       B - < *2   ^ 5(0 = s0 + a --(r - r,)' + £(* - r;)
5 + i_r - 5 

12 20 Smax J 

Kt) = a(-j(t - T,)3 + |(, - r,)' + ifflU, (B.10) 

5(0 = a(-A(f - T,)2 + B(t - T,)3). 
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For Tj + -^ < t < Tf: 

s(t) = s0 + a 
U2     \ 

-Ti(Tf ~')'+ UT, - >)'+ *-r-+ 2°ir IT 20 

m - {-j(T, - ,f + f (r, -,)') 

s(i) = a{-A(T, - t)' + B{T, - t)') 

max J 

(B.ll) 

where 

T> = Timt + Tcv and Tf = 2T^ + T„. 

and a is a sign coefficient based on 

a = sgn (sf - s0). 
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Acceleration 

B.l Command Generator Profiles for Position, Velocity, and Acceleration. 
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APPENDIX C. MINIMUM NORM SOLUTION 

Given a system of equations 

gu=f (C.l) 

where g is size nxm, u is mx 1, and / is nx 1, and if m > n, an infinite number of 

solutions exist. The minimum norm solution can be derived using Lagrange multipliers and 
minimization of the norm of the solution vector, ||M||

2
, subject to the constraint 

gu - f = 0. This can be written in terms of a performance index as 

J = -uTu + Mgu -f). (C.2) 

The minimum of 7 with respect to u can be found by 

E = u + ag)T = 0 = M + gTXT (C.3) 
du 

which occurs at u =  -gTXT. 

The minimum of J with respect to A is simply 

— = 0. (C.4) 
dk 

Substituting (C.3) into (C.l) yields 

Ar =  -(ggTr'f. (C5) 

And substituting (C.5) into (C.3) provides the minimum norm solution 

u = gT(ggTr'f. (c.6) 
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The above treatment gives equal weighting to each «,. of the solution vector. This is 

not always desirable and a modified form of (C.6) can be derived which weights each «,.. 

Define a weighted solution vector 

u   = Wu (C.7) 

where TV is a diagonal weighting matrix of the form 

W, = —. (C.8) 
u 

This implies u* is a fraction of the maximum value of «..The weighted performance index 

becomes 

J = uTu   + Mgu   -f) = uTWTWu + MgWu - f) (C.9) 

and 

?L = 0 = Wu + gTXT (CIO) 
du 

The minimum of J occurs at u =  - W~'gTXT 

— = 0 (C.ll) 
dl 

Substituting (CIO) into (C.l) yields 

Ar =  -(gW-'g'Y'f (C.12) 

And substituting (C.12) into (CIO) provides the weighted minimum norm solution 

u = W-'g^gW-'g7)-'/ (C.13) 
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For diagonal W, 

wü' = "^ (C.14) 

Therefore, to remove the contribution of any «,. from the solution vector, set it's u     to 
*       ' max 

zero in W~'. To avoid division by zero in W, rewrite (C.13) as 

" = WigWr'f (C.15) 

where W = W~'. 
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APPENDIX D. NPS PHOENIX HARDWARE COMPONENTS 

The following is a listing and description of the major hardware components 

currently onboard the NPS Phoenix vehicle. 

A.      SENSORS 

Gyroscopes 

To sense the vehicle roll, pitch and heading angular positions along with the three 

axis rates, three types of gyroscopes are used. All are manufactured Humphrey Inc. and are 

usually used for small aircraft/missile applications, and use a mechanical motor whose 

inertial angular momentum vector is fixed in a spatial direction unless acted upon by a 

torque. 

Vertical Gyro: 

This unit is used to measure the roll and pitch angle of the vehicle. The motor is 

gimbaled where the mechanical limits are 360° freedom of rotation about the roll axis and 

±80° minimum freedom of rotation about the pitch axis. The output is ± 10 Vdc and is 

read by an A/D converter on the controlling computer. Model VG34-0301-2. 

Rate Gyro: 

This is a combined package of individual gimballess rate gyroscopes for measuring 

roll, pitch, and yaw rates. The range for roll rate is 360°/sec and pitch and yaw rate 

maximums are ±90°/sec. All outputs are ±10 Vdc and read by a A/D converter. Model 

RG02-2324-1. 

Free Gyro 

This unit is used to measure the heading angle of the vehicle. The angular range is 

360° continuous and has a syncro output which is converted to 14 bit digital through the 

use of a converter chip from Analog Devices Inc. The digital data is read through two 

parallel ports on the controlling computer, 8 bits from one port and 6 from the other. The 
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gyroscope is also configured for remote cage/uncage of the gimbals from the computer. 

Model FG23-7102-1. 

Depth Cell 

The vehicle depth is measured using a differential pressure transducer with an 

operating range of 0 to 34 feet which translates to an analog signal output of 0 to 10 Vdc 

which is read by an A/D converter on the computer. The cell is located in the center of the 

forward bulkhead inside the flooded nose. The nose shields the probe from and undesirable 

flow effects from forward motion of the vehicle. The manufacturer is Psi-Tronix Inc., 

model Sll-131. 

Forward Speed Sensor (Turbo Probe) 

The vehicle speed through the water is measured by a Turbo-Probe turbine flow 

meter, manufactured by Flow Technology, Inc. The transducer is an axial rotor mounted at 

the end of a strut which protrudes through the bottom of the nose. A cowling around the 

rotor houses a magnetic pick off which generates square wave electrical pulses at a 

frequency proportional to the rotor speed. The pulses are read by a timer card in the 

computer and converted to speed using the manufacturers supplied calibration. 

Sonars 

A single Datasonics PSA-900 Sonar Altimeter is mounted facing downward in the 

nose of the vehicle. This unit is used for depth above bottom measurements and emits a ten 

degree conical beam at a frequency of 210 kHz. The signal output is 0 - 10 Vdc 

proportional to the ranges detected up to approximately 90 feet. 

DiveTracker 

A short baseline acoustic positioning system called DiveTracker by Desert Star 

Systems is installed. The system consists of two surface transducers and one mounted to 

the vehicle. The unique capability of this system is that the vehicle location can be read by 

the onboard computer in addition to being tracked on the surface. The output from this unit 
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is read by the controlling computer through a serial link and processed for navigation. 

(Reimers, 1995, Scrivener, 1996, Zinni, 1995) 

Global Positioning System 

This unit is used for obtaining the location of the vehicle in global coordinates and 

is capable of standard and differential modes. Antennas for both are mounted on the top of 

the hull as shown in Figure 3.3 and are only usable while surfaced. The unit is connected 

to the Sun Voyager computer through a serial link for processing. 

B .       GESPAC COMPUTER SYSTEM 

The Gespac boards are referred to as "Euroboards" and each have dimensions of 

approximately 4.0 X 6.0 inches and 0.75 inches thick. The 12 boards are set into a 12 slot 

G-96 bus backplane and is powered with +5, +12, and -12 Vdc and shown in the installed 

positions in Figure D. 1. 

GESMPU-30H: Microprocessor Board 

Motorola 32 bit 25 MHz 68030 microprocessor with 2.0 MBytes onboard CMOS 

dynamic Ram. Four EPROM's (Erasable Programmable Read Only Memory) chips are 

located on this board. Each have been programmed to hold essential modules for operation 

of the OS/9 operating system and configured to activate the TCP/IP network upon boot 

which enables ethernet connections from other computer systems to be made without 

relying on a console (serial) connection to the Gespac system. Once the system is up, any 

operating system modules or programs not in EPROM may be transferred to the system 

using ftp (File Transfer Program). 

GESRAM 14B: RAM/EPROM/EEPROM Memory Module 2.0 MBytes. 

2.0 MByte RAM card used for RAM disk mission data storage. 
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GESSI0-1B: Double Serial Interface Module. 

Two port RS-232-C board. Used for serial communications with the ST725 and 

ST 1000 sonars. 

GESPIA-3A: Parallel Interface Board 

Twin parallel input/output ports using TTL (0 to 5 Vdc) logic for enabling/disabling 

servo amplifier power relays for: 

PortO: 

Bit PAO -    Left screw 
Bit PA 1 -    Right screw 
Bit PA2 -    Bow vertical thruster 
Bit PA3 Bow lateral thruster 
Bit PA4 Stern vertical thruster 
BitPA5 -    Stern lateral thruster 

It is also used for sending signals to cage or uncage the free gyroscope and is also 

connected to the cage/uncage status lines. 

PortO: 

Bit PBO     -    Cage free gyro 
Bit PB3     -    Uncage free gyro 

Port 1: 

Bit PAO     -    Cage indicator 
Bit PBO     -    Uncaged indicator 
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GESADA-1: Analog/Digital & Digital/Analog Subsystem (10 Bits) 

A 16 channel, 10 bit analog/digital converter for: 

Channel X - Computer battery voltage level indicator 
Channel Y - Motor battery voltage level indicator 
Channel 5 - Fore leak detector 
Channel 6 - Aft leak detector 

Circuitry for the fore/aft leak detectors are also connected to external LEDs for visual 

reference while the program is not running. 

GESADC-2C: 16 Channel, 12 Bit Data Acquisition Module 

A 16 channel 12 bit analog/digital converter for measurements of: 

Channel 12 -    Roll angle gyroscope ±10Vdc 
Channel 11 -    Pitch angle gyroscope ±10Vdc 
Channel 9 -    Roll rate gyroscope ±10Vdc 
Channel 8 -    Pitch rate gyroscope ±10Vdc 
Channel 10 -    Yaw rate gyroscope ±10Vdc 
Channel 7 -    Depth cell. OtolOVdc 

GESTIM-1A: Multiple Timer Module (3 Modules) 

Each module contains five 16 bit programmable timers (AM9513) for both event 

counting and frequency output. Three modules are used for: 

Module 1: 

Servo motor position control for: 

Counter 1 (Output) - Top front rudder and bottom rear rudder 
Counter 2 (Output) - Bottom front rudder and top rear rudder 
Counter 3 (Output) - Left bow plane and right stern plane 
Counter 4 (Output) - Right bow plane and left stern plane 
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The outputs are pulse width modulated signals which are proportional to the desired 

angular deflection of each servo motor. 

Module 2: 

Motor rotation rate measurement of: 

Counter 1 (Input) - Bow vertical thruster 
Counter 2 (Input) - Bow lateral thruster 
Counter 3 (Input) - Stern vertical thruster 
Counter 4 (Input) - Stern lateral thruster 

Module 3: 

Motor rotation rate measurement of: 

Counter 1 (Input) -    Left screw 
Counter 2 (Input) -    Right screw 
Counter 3 (Input) -    Turbo probe 

The inputs are square wave pulse trains from each motor encoder or probe which is 
measured and converted to rotations per second using an appropriate calibration function in 
software. 

EVLAN-11: Ethernet & Starlan Data Link Controller 

Ethernet module for network communications between internal vehicle processors and 

external computers. An AUI (10Base5) to thin wire (10Base2) transceiver is attached to 

this unit. 
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GESDAC-2B: Digital/Analog Converter. 

An 8 channel, 12 bit digital/analog converter module for input to servo amplifiers 

for control of: 

Channel 0 - Left screw 
Channel 1 - Right screw 
Channel 2 - Bow vertical thruster 
Channel 3 - Bow lateral thruster 
Channel 4 - Stern vertical thruster 
Channel 5 - Stern lateral Thruster 

GESMFI-1: Multi-Function Interface 

Contains two RS-232 serial ports and two parallel ports. 14 bits of the two parallel 

ports interface with the synchro to digital converter connected to the free gyroscope. 8 bits 

from parallel port 1 and 6 bits from port 2. One serial port is used to read position and 

message data from the vehicle DiveTracker unit. 

GESBUS-12M: Interconnection Backplane for G-64 and G-96 Euroboards 

Twelve slot Backplane for the boards listed above. 

C.      ELECTRICAL COMPONENTS 

Batteries 

For the purposes of load balancing, two separate battery systems are used. Each 

system comprises of two 12 Vdc sealed lead acid batteries connected in parallel giving a 

total of 24 Vdc. One system powers the computer system, sonars, speed encoders, and 

control surface servo motors. The second system is used for the gyroscopes and 

propulsion motors. These have been separated since the computer is sensitive to voltage 

fluctuations which are caused by the propulsion motors. All batteries are rechargeable from 

an external power supply using a through-hull connection. The batteries are Panasonic 

Model LCL12V38P with nominal capacity of 38.0 Amp-hours. 
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ACON Power Supplies 

The Gespac computer system is powered by a single ACON Model R100T2405- 

12TS power supply. It provides +5, +12, and -12 Vdc and is supplied by 24 Vdc directly 

from the computer battery system. A second supply is also installed for powering other 

units such as the DiveTracker module, GPS module, and ethernet transceiver for the Sun 

Voyager. 

Calex Power Supplies 

Calex Models 12S15, 48S15, and 12S5 power supplies provide either +5, +15, or 

-15 Vdc for the following units: 

Reference source for the rate and vertical gyros (±15 Vdc) 

Datasonics sonar (+15 Vdc) 

Depth cell (+15 Vdc) 

GESTIM-1A timer cards for control surface signal channels (+15 Vdc) 

Control Surface servo motors (+5 Vdc) 

Propulsion Motor Servo Amplifiers 

Motor voltage control for the thrusters and stern screw motors is controlled through 

the use of Advanced Motion Controls PWM Model 30AD8DD servo amplifiers. One 

amplifier is used to control each motor and uses a 0 to 10 Vdc control signal to modulate 

the pulse width of a 24 Vdc, 5 to 45 kHz output signal to the motor. A control signal of 0 

Vdc provides a voltage of -24 to the motor while a 10 Vdc signal corresponds to -24 Vdc to 

be sent. 
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GESRAM 14B4 

GESMPU-30H 

GESMFI-1 

EVLAN-11 

GESSIO-1B 

GESPIA-3A 

GESADA-1 

GESADC-2C 

GESTIM-1A 

GESTIM-1A 

GESTIM-1A 

GESDAC-2B 

3 

D. 1 Layout of Gespac Card Cage Slots 
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APPENDIX E. PROLOG PREDICATES LINKED TO 
TACTICAL LEVEL C FUNCTIONS 

The following is a listing of the C functions callable from the Strategic Level Prolog 

code. 

ood(+string, [-integer]) 

Description: This is the Officer of the Deck predicate where the value of "string" 

may be any one of the following: 

start_sun_network 

Description: Open network socket from Sun SPARC to Gespac. 

start_sun_and_iris_network 

Description: Open network socket from Sun SPARC to Gespac and IRIS Elan. 

start_networks 

Description: The same as start_sun_and_iris_network. 

start_dive_tracker 

Description: Commands the Execution Level to fork DiveTracker process. 

initializejboards 

Description: Commands the Execution Level to initialize all I/O boards on 

Gespac. 

read_mission_file 

Description: Commands the Tactical Level to read the mission file which 

contains phase set points, time outs, etc. 

turn_on_prop_power 

Description: Commands the Execution Level to activate the thruster and rear 

screw servo amplifiers. 
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turn_on_sonar_power 

Description: Commands the Execution Level to activate the sonar power. 

turn_off_sonar_power 

Description: Commands the Execution Level to deactivate the sonar power. 

gyros_on 
Description: Tells the Execution Level that the gyroscopes are on and should be 

zeroed and read each time step. 

zero_sensors 
Description: Commands the Execution Level to zero the depth cell and 

gyroscopes at this time. 

initialize_stl000_sonar 
Description: Commands the Execution Level to initialize the ST 1000 sonar 

head. 

initialize_st725_sonar 

Description: Commands the Execution Level to initialize the ST725 sonar head. 

uncage_directional_gyroscope 

Description: Commands the Execution Level to uncage the directional (free) 

gyroscope. 

initialization_done 
Description: Informs the Execution that no more initialization will be performed. 

shutdown_network 
Description: Causes the Tactical Level to disconnect from the Execution Level 

also from the IRIS if connected. 

engineer(+string, [-integer]) 

Description: Used to activate engineering functions. Not functional at this time. 
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Execute Predicates Always Returns 1 (TRUE) 

exec_submerge([-integer]) 

Description: Commands the vehicle to submerge using vertical thrusters. 

exec_rotate([-integer]) 

Description: Commands the vehicle to rotate using lateral thrusters. 

exec_servo_X([-integer]) 

Description: Commands the vehicle to servo to wall using rear screws and sonar 

for range information. 

exec_stop_servo_X([-integer]) 

Description: Deactivates wall servoing mode. 

exec_sleep(+integer,[-integer]) 

Description: Uses the C language sleep function to halt execution for "integer" 
seconds. 

exec_start_timer([-integer]) 

Description: Starts a timer for the duration of the phase time out. Used in 

conjunction with ask_time_out. 

exec_surface([-integer]) 

Description: Commands the vehicle to surface at maximum thrust. 

exec_next_setpt_data([-integer]) 

Description: Increments the phase set point vector index. 

exec_find_sonar_target([-integer]) 

Description: Begin search for target of interest using object detection algorithm 
in the Sonar Manager 
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exec_start_int_control_z([-integer]) 

Description: Start implementing integral control for submergence. 

exec_start_send_stlOOO_data([-integer]) 

Description: Activates sending of sonar data to Sonar Manager process. 

exec^stop_send_stlOOO_data([-integer]) 

Description: Deactivates sending of sonar data. 

exec_set_stlOOO_mode([-integer]) 

Description: Sets current phase ST 1000 sweep parameters. 

exec_start_ping_stlOOO_sonar([-integer]) 

Description: Start pinging the ST 1000 sonar. 

exec_stop_ping_stl000_sonar([-integer]) 

Description: Stop pinging the ST 1000 sonar. 

exec_start_sonar_filter( [-integer]) 

Description: Activates the kinematic Kaiman filter using ST 1000 sonar data. 

exec_set_heading([-integer]) 

Description: Used to override current heading set point. 

exec_set_heading_from_target([-integer]) 

Description: Commands the vehicle to point towards target of interest. 

exec_start_XY_psi_control([-integer]) 

Description: Commands the vehicle maneuver to set points relative to a target. 

exec_calc_pos_from_target([-integer]) 

Description: Calculates the vehicle position relative to a target. 
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exec_track_target( [-integer]) 

Description: Commands the sonar to track a target continuously. 

Query Predicates Return either a 1 (TRUE) or 0 (FALSE) 

ask_depth_reached( [-integer]) 

Description: Returns TRUE if the depth is within error bounds, otherwise 

FALSE. 

ask_heading_reached([-integer]) 

Description: Returns TRUE if the heading is within error bounds, otherwise 

FALSE. 

ask_X_reached([-integer]) 

Description: Returns TRUE if the longitudinal position is within error bounds, 

otherwise FALSE. 

ask_time_out([-integer]) 

Description: Queried after a call to exec_start_timer. If the phase time-out 

has been exceeded, the predicate returns TRUE. If the elapsed time is less 

FALSE is returned. 

ask_system_problem([-integer]) 

Description: Returns TRUE if a system problem has been encountered, FALSE 

if no problems. 

ask_surface_reached([-integer]) 

Description: Used in conjunction with exec_surface. If the depth is within .1 

feet of the surface, TRUE is returned, otherwise FALSE. 

ask_sonar_ping_out([-integer]) 

Description: Returns TRUE if allotted time to ping the sonar has expired 
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ask_int_control_z_on([-integer]) 

Description: Returns TRUE if integral control for submergence is active. 

ask_int_controI_z_off( [-integer]) 

Description: Returns TRUE if integral control for submergence is inactive. 

ask_sonar_target_found([-integer]) 

Description: Returns TRUE if target described by the Sonar Manager algorithm 

is identified. 

ask_X Y_psi_reached( [-integer]) 
Description: Returns TRUE if Xam,   Ycnm,   y/am for the particular phase is 

within error bounds. 

ask_XY_psi_control_off([-integer]) 

Description: Returns TRUE if local navigation to a target is inactive. 
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APPENDIX F. EXECUTION LEVEL C LANGUAGE 
FUNCTIONS 

The following is a listing and description of the C language Execution Level 
functions used for vehicle control and environment sensing. 

A.      SENSORS 

double ro!l_angle() 

Description: Returns the roll angle in radians from the vertical gyroscope. 

double pitch_angle() 

Description: Returns the pitch angle in radians from the vertical gyroscope. 

double calc_psi() 

Description: Returns the heading angle in radians from the free gyroscope. The 
angle returned includes any multiples of ±2n radians if the vehicle rotates 
beyond ± 360°. 

double roll_rate_gyro() 
Description: Returns the roll rate in radians/sec from the rate gyroscope. 

double pitch_rate_gyro() 

Description: Returns the pitch rate in radians/sec from the rate gyroscope. 

double yaw_rate_gyro() 
Description: Returns the yaw rate in radians/sec from the rate gyroscope. 

void read_gyros() 

Description: Performs all of the gyroscope reads listed above with a single 
function call. 
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void cage_dg() 

Description: Cages the free (directional) gyroscope, 

void uncage_dg() 

Description: Uncages the free gyroscope. 

int cage() 

Description: Returns TRUE (1) if free gyroscope is caged, and FALSE (0) if 

not. 

double depth() 

Description: Returns the vehicle depth in feet from the depth cell. 

double read_computer_battery_voltage() 

Description: Returns the computer battery voltage. 

double read_motor_gyro_battery_voltage() 

Description: Returns motor/gyro battery voltage. 

int leak_check() 

Description: Returns TRUE (1) if a leak is detected, otherwise FALSE (0). 

zero_sensors(mode) 

Description: At the time the function is called the current vehicle orientation, 

angular rate, and depth is read and these values are used as zero offsets until 

mission completion. If the gyroscopes are not to be used for a mission, the 

value mode should be set to 0, to prevent reading them. If the gyroscopes are 

to be used, mode should be set to 1. 

B.      ACTUATORS 

thruster_power(onoff) 

Description: Thruster Motor Power Control, onoff = TRUE to activate, 

FALSE to deactivate. 
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screw_power(onoff) 

Description: Rear Screw Power Control, same as above. 

motor(n,value) 

Description: Commands to motor number n voltage where value = 0-1023 

which maps to -24 - +24 VDC applied to the motor. 

n = 

0 Left Screw 

1 Right Screw 

2 Bow Vert. Thruster 

3 Bow Lateral Thruster 

4 Stern Vert. Thruster 

5 Stern Lateral Thruster 

zero_motors() 

Description: Sends a 0 voltage command to all motors. 

float motor_speed(n) 

Description: Returns motor speed in rotations/sec for motor n. 

ls_speed_control(n_com) 

Description: Control left rear screw to speed n_com in rotations/sec. 

rs_speed_control(n_com) 

Description: Control right rear screw to speed n_com in rotations/sec. 

rudder(angle) 

Description: Commands rudders to deflect to angle in radians. 

planes(angle) 

Description: Commands planes to deflect to angle in radians. 

329 



zero_fins() 

Description: Sends a command of zero angle to all fins, (rudders and planes). 

C.      EXECUTION LEVEL PRIMITIVES 

The following are strings passed to the Execution Level from the Tactical Level. 

Initialization Primitives: 

INTTIALIZELBOARDS 

START_DIVE_TRACKER_PROCESS 

TURN_ON_PROP_POWER 

TURN_OFF_PROP_POWER 

TURN_ON_SONAR_POWER 

TURN_OFF_SONAR_POWER 

ZERO_GYROS_AND_DEPTH_CELL 

ZERO_DEPTH_CELL 

UNCAGE_DIRECTIONAL_GYROSCOPE 

INITIALIZE_ST 1000_SONAR 

INITIALIZE_ST725_SONAR 

INITIALIZATION_DONE 

Control Primitives: 

Command Strings: 

SUBMERGE 

ROTATE 

SERVO_X 

XY_PSI_CONTROL 

STOP_SERVO_X 

SURFACE 

START_INT_CONTROL_Z 

START_DEPTH_ERROR_FILTER 
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APPENDIX G. STANDARD SONAR COMMANDS 

The following is a list of the standard sonar commands used for controlling the 

Tritech ST725 and ST 1000 sonars. 

Dec Chr Command 

043 '+' MVCW 

045 '-' MVCCW 

065 'A' SETAV 

066 'B'  SETGN 

067 "C SETYMI 

068 'D' INDEF 

069 'E' SETYMA 

070 *F'  SET96 

071 'G'  SET 192 

072 'H'  SETHS 

073 T WRPARM 

075 'K'  SETPK 

076 'L'  SCCW 

Description 

Move 1 step ClockWise, current step size. Replies 'T','t','F', or 'f 

Move 1 step CounterClockWise. Replies T'.'t'.'F, of 'f 

Set mode return range bin avg. Value. Reply is A' 

Set gain for test purposes. Send 'B' followed by Char(gain value). 
Reply 'B' 

Set initial gain for TVG (Time Varying Gain). Call is 'C followed 
by Char(Ymin) Where Ymin = 255*gain/100, 0 < gain < 100. 
Reply is 'A' 

Inquire if head is using Default settings. Reply is T if yes, 'F' if 
not. 

Set final gain for TVG. Send 'E' followed 
by Char(Ymax). Reply is 'E' 

Set 9600 baud communication speed (Default) 

Set 19200 baud communication speed 

Set halfstep mode (0.9 deg). Reply 'H' 

Inquire sonar parameters. Replies: 

Word - TxPulse length in 1.96 fi sec units 
Byte - NSAMPL, No. A/D samples per bin 
Byte - NBINS, No. of bins to collect 
Byte - Range Code, 0-8 
Byte - DataByte checksum, (Lower 8 bits of the sum of above 

values) 

Set mode return range Peak. Value (Normal Use). Reply 'K' 

Scan CounterClockWise (Scan Left). Does a scan ping. Returns 
NBINS/2 bytes of data + TtFf, then steps CCW 

077 'M' TSTSEN Test head direction sensor. Replies TtFf 
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079 'O' MOTOFF 

063 '?' NA 

080 'P' RDPARM 

082 'R'  SCW 

083 'S'  SCAN 

084 T GetGn 

085 'U'  CLRTVG 

086 'V VER 

087 'W  SendGn 

088 *X'  SETTVG 

089 'Y'  CLRHS 

Switch scan motor off. Replies 'O' 

No Action. For comms test. Replies '?' 

Send sonar parameters. Send 'P' followed by 
Word - TxPulse length in 1.96 //sec units 
Byte - NSAMPL, No. A/D samples per bin 
Byte - NBINS, No. of bins to collect 
Byte - Range Code, 0-8 
Byte - DataByte checksum, (Lower 8 bits of the sum of 
above values) 

Replies T if checksum ok, else F" 

Scan ClockWise (Scan Right). Same return as SCCW 

Scan but no step. Same return as SCW,SCCW 

See TVG gains 

Disable TVG, gain 0. Replies 'U' (Don't Use) 

Returns ASCII version number '3' 

See TVG gains 

Enable TVG (Normal). Replies 'X' 

Full step mode set (1.8 deg). Replies 'Y' 

Profiler Sonar Commands 

036 '$' CLRDLE 

040 '('  FESCCW 

041 ')'  FESC 

042 '*' SETDLE 

" FHalfS 

049 1'  FFullS 

050 '2'  FDoubS 

Clear DLE protocol mode. No reply 

Get echorange, step CounterClockWise (For Profiling). 
Equivalent to sending 'Z' and 
MVCCW. Replies: 
Word - Echorange 
Byte - 'TtFf 

Get echorange, step ClockWise. Same reply as FESCCW 

Set DLE protocol mode. No reply 

Set step size 0.9 degrees. No reply 

Set step size 1.8 degrees. No reply 

Set step size 3.6 degrees. No reply 
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060 '<'  SHORTR Set Profiler to 1 mm resolution. No reply 

061 '=' RDMOTD Set motor step delay time, in 1.96 //sec intervals. Send '=' 
followed by Word - Delay interval 

074 'J' RDESPA Send profiler parameters. Send T followed by: 
Word - ECPULS - Echo TxPulse length in 1.96 //sec units 
Word - TMOUT - Timout for max range (mm) 
Word - LOKOUT - Lockout time, min range 1.96 usec units 
Word - ESWATT - Wait time AutoES mode 
Byte - GECMEN - Initial gain value 
Word - GAINDT - Gain increment delay for TVG 
Word - ECSCLX - Scale numerator for range 
Word - ECSCLY - Scale denominator for range 
Word - Maxdst - Max distance in range units 
Word - DACSCX - Scale numerator for DAC O/P 
Word - DACSCY - Scale denominator for DAC O/P 
Byte - RngUnt -0=10 mm, else 1 mm range units 
Byte - CHKSUM - DataByte checksum, (Lower 8 bits of the 
sum of above values) 
Replies T if Ok, else 'F' and returns head to defaults 

078 'N'  ENQES Inquire if profiler support. Reply ' 1' 

081  'Q' WRESPA Inquire profiler parameters. Replies RDESPA ended with 
DataByte checksum 

090 'Z'  ESRNG Profiler range. Replies: 
Word - Profiler range in mm 

091 '[' DRON Profiler debug on. With'Z'replies profiler raw time, distance 
and DAC value (0-4095) in ASCII 

093 ']' DROFF Profiler debug off 
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APPENDIX H. POLYGON INTERSECTION ALGORITHM 

The intersection of a straight line with a plane was taken from (Dewey, 1988). A 

line may be represented by the equation: 

P(t) = P(0) + cet (0 < t < 1) (H.1) 

where P(0) is the point which locates the start of the line, e is a unit vector in the direction 

of the line, and c is a constant which specifies the length of the line (Figure H.l). The 
equation of the plane is 

P(u,v) = P(0,0) + c,e,u + c2e2v (H.2) 

where u and v have the range 0 to 1 and c} and c2 are the length and width dimensions of 

the plane of interest. e; and e2 are orthogonal unit vectors which lie on the plane. The 

system of equations which describe the point of intersection is 

Pc = P(0,0) + c,e,u + c2e2v = P(0) + cet (H.3) 

The three unknowns u, v, and t are uniquely determined by the three equations. 

The above equations may be expanded in matrix form to yield 

c;e/v 

cieiz 

C2C2x "<*/ u 
- 
XQ 

* 
~ xoo 

c2e2v -ce.v Iv •   =   . y0 - ym 

c2e2z -cez t z0 ~ zoo. 

(H.4) 

where 

*0 
xoo 

y0 ■ = P(0) and yoo 

.zo. J-00 

= P(0,0) 
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Equation (4) may be written in compact form as 

Mu = z (H.5) 

and the solution vector u is obtained by 

u = < • = M~'z (H.6) 

The point of intersection is simply 

p  = p(0) + cet (H.7) 

If any of the solutions to u, v, or t is out of the range 0 to 1, the intersection lies on the 
extended plane (i.e. outside of the plane area bounded by c, and c2). If the line is parallel 

to the plane, M is singular and no solution exists. 
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RECTANGULAR PLANE 

H. 1 Vector Definitions for the Polygon Intersection Algorithm. 
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